ANNEX B. EVALUATION RESULTS

CONTENTS

Automatic Vehicle Classification Accuracy

Axle Spacing Measurement Accuracy

Weigh-In-Motion Analysis

Weight Screening Analysis

Overweight Vehicles

Truck Transit Times

Queuing Analysis

ANNEX B. EVALUATION RESULTS

INTRODUCTION

This annex presents detailed tables and graphs of results gained from the on-site evaluation of the Crescent Demonstration project. This evaluation examined the accuracy of the Crescent equipment and the impact on weighstation operations of the use of the HELP concept. These results have been summarized in Chapter 5. The results are presented in the following order:

- (1) automatic vehicle classification accuracy,
- (2) axle spacing measurement accuracy,
- (3) weigh-in-motion analysis graphs,
- (5) proportion of overweight trucks,
- (6) truck transit times through weighstations, and
- (7) queuing analysis.

Within each of these different sections of results in Annex B, there is a description of the format of the presentation of the results and any explanatory notes that are required. Additionally, points of interests that have not been described in Chapter 5 are highlighted.

AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

This section presents the results of the automatic vehicle classification (AVC) equipment assessment. This assessment compared manual classification observations undertaken by trained observers with the automatic vehicle classifications recorded by the AVC equipment.

The results are presented in a tabular format which displays the number of observations recorded in terms of their manual and automatic vehicle classifications. For each assessment of AVC equipment accuracy during the on-site evaluation two or three tables are given. These tables present the following information:

- (1) the actual observed comparison of manual and automatic classifications,
- (2) the manual/automatic classification comparison following the screening of low weight and size vehicles. The Crescent AVC system screens out observations of vehicles of class 6 and under in the FHWA F Scheme classification. This screening reduces the number of vehicles recorded and therefore the amount of computer data to be stored. The result of screening is that a number of manual classification observations for small vehicles have no corresponding automatic classification record. These vehicles apparently missed by the AVC equipment reduce the observed equipment accuracy.

The table (marked Note A) shows the AVC accuracy after removal of all manual vehicle classifications of class 6 and under that have no associated automatic record. Due to the automated screening process these tables may be considered the true observed AVC accuracy, and

(3) Following the screening of smaller vehicles by the AVC system, it is apparent that the manual and automatic observations often differ in a consistent manner. Two sources of error exist for these consistent differences in classification. The first relates to the method used to classify vehicles by the AVC system, which utilizes the number of axles, wheelbase and axle spacings of vehicles. These differences may indicate vehicles that have non-typical features, such as short wheelbases, that results in placement into an incorrect classification. The second possible source of error is observer error which occurs most frequently with high traffic flows on mainline sites.

The tables (marked Notes B and C) demonstrate the effects on AVC accuracy due to modifications in these observations to gain consistency between manual and automatic records. These modifications are given by the notation as follows:

Note B - AVC classifies class 5 vehicles whereas manual observations indicate class 3 vehicles. The automatic observations have been modified to class 5.

Note C - AVC classifies class 3 vehicles whereas manual observations indicate class 4 vehicles. The automatic observations have been modified to class 3.

Results for the following sites are presented:

- * Jefferson,
- * Ashland (mainline),
- * Bakersfield,
- * South Pheonix,
- * Seguin,
- * Kelso,
- * Woodburn, and
- * Bow Hill.

At the South Pheonix site, the AVC failed to classify 50% of vehicles. This nonclassification may be due to equipment failure or poor lane discipline by vehicles at this mainline site.

B.A.1.1 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

JEFFERSON, OR APRIL 7, 1993

	18 19 RECORD CLASS GRAND TOTALS TOTALS	+	193	0	0	0	4							771	7		6	0	0	6	3-		7	Tree standing difference or 47 6 %	Total percentage difference = 42.8 %	14 2	
	17	+	+	+	+	+		_	-	\vdash	-	_	\vdash	+	+	+	+	+	+	-		-	_	-		0	
	<u>~</u>	+	+	†	\dagger	\dagger		-	-	\vdash		\vdash	\vdash		 	+	7	\dagger	\dagger	+	*******		\vdash	+	-	<u></u>	-
	4	T	†	T	1	\dagger							_		T	†	+	\dagger	\dagger	1		 	\dagger			2	
	61					1									-	1	T	1	1	1			T			-	
	13													-												4	
LASS	11			L									127	-	, .					7						141	
MANUAL CLASS	01	_	_		1	_											\perp	\perp	1	_						•	
W	٥		_	L	_	1				-							L	L		1						_	
	••					1				3								L									
	-				L																					0	
	۰				L			-																			
	v						4																			\$	
	4																									0	
	۳																								v	v	
	2																								2	2	
\perp	-			L			\perp														\int				191	191	36
WIM CLASS		-	n	3	4	,	\$	9	7	8	6	10	=	12	13	4	21	4		17	18	19	0	SPURIOUS	NO RECORD	MANUAL CLASS TOTAL	MANIAL

B.A.1.2 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

JEFFERSON, OR APRIL 7, 1993

WIM CLASS	1 1								MA	MANUAL CLASS	'ASS									ON S	AVCS	VAVCS
	-	2	3	4	\$	٠	7	œ	6	10	=	12	13	14	15	91	13	81	61	RECORD	TOTALS	TOTALS
_																					0	193
2																					0	
3																					0	
4																					0	
\$					4																4	
9						3															3	
7																					0	
8					-			3	-												8	
6																					0	
10																					0	
=											121										127	
12												4									7	
13											٥				-						11	
7														7	2						6	
15																					0	
91																					0	
11											2						,				6	
81																	2	4			91	
19																			2		2	
0																					0	
SPURIOUS																			,	Total absolute difference = 89.1	difference = 8	9.1 %
NO RECORD							İ													Total percentage difference = 80.3 %	je difference =	80.3 %
MANUAL CLASS TOTAL	0	0	0	0	۶	3	0	3	1	0	141	4		7	3	0	۵	4	2	NOTE: A		
MANUAL GRAND TOTAL	193																					
																			1			

B.B.1.1 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

ASHLAND, OR. APRIL 5, 1993

WIM CLASS									MANU	MANUAL CLASS	SS									S.	AVCS	AVCS
	_	2	3	4	S	9	7	∞	6	2	Ξ	12	13	4	51	92	11	∞_	2	RECORD	CLASS	GRAND
1												-	_			_	-	 -			•	8
2								П					-	-	-		_				0	
3			-																		1	
4																					0	
\$				-							s				<u> </u>	-	-	-	-		۰	
9												-		-	-						0	
7												-			-	-					0	
8								,				_			-	\vdash	_				1	
6											-			-	-	-					-	
10													-	-		-	-	-			•	
11											48					-	-				84	
12											3	12		.		-	-	-			25	
13											4				-	H	-	-			4	
14															7	-	-				2	
15													-	-	-	\vdash	-				0	
16														_	\vdash		_				•	
17														-			-	-			0	
18																-	-				0	
19													_		\vdash	-					0	
0																-	\vdash				0	
SPURIOUS																		\vdash		Total absolute	Total absolute difference = 75.6 %	8.6%
NO RECORD		1	3	-								-								Total percenta	Total percentage difference = 60,0 %	% 0.0%
MANUAL CLASS TOTAL	0	-	4	2	0	0	0	1	0	0	19	13	0	0	2		0	0	0			
MANUAL GRAND TOTAL	8																					

B.B.1.2 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

ASHLAND, OR. APRIL 5, 1993

WIM CLASS									MAN	MANUAL CLASS	SS									ON ON	AVCS	AVCS
	-	2	3	4	\$	9	7	œ	6	01	=	12	13	4	15	91	11	81	61	RECORD	CLASS	GRAND
-																					•	84
2																					0	
3			-																		-	
4																					•	
\$									_		~										۰	
9																						
7																					0	
8								,													7	
٥											-										-	
2																					•	
=											8										8	
12											3	12									22	
13	_]										4										4	
2	_]														2						7	
15																					0	
91																					•	
17																					0	
18																					0	
61																					•	
0																					•	
SPURIOUS																				Total absolute difference = 80.0 %	difference = 8	80.0%
NO RECORD												-								Total percentage difference = 63.5 %	ge difference =	63.5 %
MANUAL CLASS TOTAL	0	0	-	-	0	0	0	1	0	0	19	13	0	0	2		۰			NOTE: A		
MANUAL GRAND TOTAL	88																					

B.C.1.1 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

BAKERSFIELD, CA APRIL 16, 1993

AVCS	TOTALS	8	2																
AVCS	TOTALS	0	0	,	,	, <u>,</u>	2 -	, ,	, =	: 3	123		,	, .	-	-	8 % 8 %	R 7	
ON	RECORD																curacy = 73.1		
SPURIOUS																	Total absolute accuracy = 73.1 %		
	z				T						T			T		T	T	•	
	13											T		-				-	
	12												١,					-	
	=											"					-	8	
	01																	o	
	٥								-	<u></u>					-		2	821	
L CLASS									2									2	
MANUAL CLASS	,																	•	
	9						2											2	
	\$					-												-	
	4				2	80							-				2	13	
	3			2		9				2							6	61	
	2																EI	14	
	-					-	-										4	٧	121
WIM CLASS		1	2	3	4	\$	٥	7	80	6	10	П	12	EI	Z	SPURIOUS	NO RECORD	MANUAL CLASS TOTAL	MANUAL GRAND TOTAL

B.C.1.2 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

BAKERSFIELD, CA APRIL 16, 1993

AVCS	TOTALS	8		7															
AVCS	TOTALS	0	•	3	2	91		0	11	129	0	27	3	-	-		.4 %		
NO RECORD																	Total absolute accuracy = 83.4% Total compensated accuracy = 74.4 %		
SPURIOUS																	Total absolute ac Total compensate	NOTE: A	
	z																	0	
	13													-				-	
	13												2					3	
	=									80		27					-	35	
	2																	0	
										6									
83	6								-	119					-		2	123	
MANUAL CLASS	86								93									01	
MAN	7									~								0	
	۰						2											2	
	s					1												1	
	4				2	8							1					11	
	3			2		9				2								10	
	2			1														-	
						-												2	661
WIM CLASS		-	2	3	4	\$	9	1	80	6	01	=	12	13	Z	SPURIOUS	NO RECORD	MANUAL CLASS TOTAL	MANUAL GRAND TOTAL

B.D.1.1 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

S. PHOENIX, AZ MARCH 25, 1993

WIM CLASS				:			MANUAL CLASS	CLASS							SPURIOUS	NO RECORD	AVCS	AVCS
	1	2	3	4	\$	۰	1	00	6	02	=	12	13	z			TOTALS	TOTALS
ı																	0	136
2		1	1														2	
3		1	9														00	· · · · ·
4			2														2	
5		2	91	2		2											22	
٥						8											80	
7							-										-	
8						-		8	-								01	•
6									æ		2						19	·····
10																	0	·
=											3						3	
12											_						-	
13																	o	
z			-			1		1	3								12	
SPURIOUS																	1	
NO RECORD		12	11			£		0	15		٥	-	2		Total absolute a	Total absolute accuracy = 45.5 % Total compensated accuracy = 33.7 %	33.7 %	
MANUAL CLASS TOTAL	0	16	43	2	0	15	1	56	8	0	12	-	2	0				
MANUAL GRAND TOTAL	202																	

B.D.1.2 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

S. PHOENIX, AZ MARCH 25, 1993

AVCS	TOTALS	136					-				_ 						-		<u>-</u>
AVCS		•	2	80	2	22	80	-	10	63	0	3	-	0	12		bR.		
!	F																54.1 % ' = 40.0		
NO RECORD																	accuracy =		
SPURIOUS																	Total absolute accuracy = 54.1 % Total compensated accuracy = 40.0 %	NOTE: A	
	z																	0	
	13																2	2	
	13																-	-	
	=									2		3	-				9	12	
	01																	0	
	6								-	99					3		13	84	
CLASS	80			-					8						7		0.	36	
MANUAL CLASS	,			-				-										-	
	9					2	80		-						-			12	
	\$																	0	
	4					2												2	
	3		-	9	2	91									1			26	
	2		-	1		2												4	
	-																	0	02.1
WIM CLASS		-	2	3	4	5	9	1	8	6	10	11	12	13	Z	SPURIOUS	NO RECORD	MANUAL CLASS TOTAL	MANUAL

B.D.1.3 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

S.PHOENIX, AZ MARCH 25, 1993

	-	T			==			_									T		·	
AVCS	GRAND		<u>\$</u>												Mit injunction					
AVCS	TOTALS		٠ ا د	7	×	2	•	8		01	13	,	9	, .	- ,	-	71	8 0 86	R c	
ON	KELUKU																	d common = 63.5	r - Kommon	
SPURIOUS										_								Total absolute accuracy = 63.5 %	NOTE: B	
	z		1																0	
	E	T			T	T								T				2	2	
	22				T								T					-	-	
	=						1				~		ļ "					•	12	
	9							1											0	1
	6						1	1	1	-	8					-		2	28	
CLASS				-					1	«						-		2	82	
MANUAL CLASS	-						†	Ī	-										-	
	°					2		•	T	-						-			12	
	5																		0	
	4					2													2	
			-	22	2				T							-			z	
	2		-	-		7													4	
	-																		0	P2.1
WIM CLASS		1	2	3	4	\$	9	,		8	6	10	11	12	13	Z	SPURIOUS	NO RECORD	MANUAL CLASS TOTAL	MANUAL GRAND TOTAL

B.E.1.1 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

SEGUIN, TX JANUARY 28 & 29, 1993 LANE 3

1	w		8 7	•	9	=	-	52					TOTALS
1 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			2				2					TOTALS	
			2									•	131
			2								-	-	
			2								3	4	
1 1 2 3			2									8	
			2									*	
5 3			2								7	-	
1 2 3			2									•	
2				-							-	•	
				82		-				-	-	8	-
							-						
						~						,	
												•	
			-	-							-	9	
SPURIOUS													
NO 4 4 4 5 7	_		٧.							Total absolute accuracy = 64.7 % Total compensated accuracy = 52.2%	curacy = 64.7	% 2.2%	
MANUAL 0 6 18 9 0 1 0 8 91 0 3 CLASS TOTAL	0	0	œ	16	0	-	0	0	0				
MANUAL 136 GRAND TOTAL													

B.E.1.2 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

SEGUIN, TX JANUARY 28 & 29, 1993 LANE 3

AVCS	GRAND		<u> </u>																	
-		+	T	T		T		-				Γ	T	T	T	T	-			
AVC	CLASS TOTALS	ľ	0		7	1	81	3	٥	۴	82	'	1	2	۰	0 1	0	* ;	# ?/6	
NO	RECORD		•	-	9		٥	2		-	_						^	ocuracy = 71.0	ed notificy =	
SPURIOUS											-							Total absolute securacy = 71.0 %	NOTE: A	
	z																		0	
	13				T								T						0	
	12															 			0	
	=			1							-		,	1					-	
	2				T														0	
	6					\dagger				-	82					_		-	=	
CLASS	•						1			2						-		~	∞	
MANUAL CLASS	,					T													0	
	•							-											-	
	\$									1									0	
	4				1.	1	\top												~	
	e.					1	=									-			2	
	3			-							-								2	
	-																		0	124
WIM CLASS		1	2	6	,		î	٥	7	80	6	2	11	12	13	Z	SPURIOUS	NO RECORD	MANUAL CLASS TOTAL	MANUAL GRAND TOTAL

B.E.1.3 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

SEGUIN, TX JANUARY 28 & 29, 1993 LANE 3

WIM CLASS							MANUAL CLASS	CLASS							SPURIOUS	NO	AVCS	AVCS
		2	3	4	s	9		80	6	0	=	12	E .	z			TOTALS	TOTALS
-																	0	131
2																-	-	
3		-	13													3	17	
7				5													3	
\$																8	\$	
٠						-										2	3	
7																	0	
80								2	e.							-	•	
٥		-							22		-				_	-	82	
01																	0	
=											7						2	
12																	0	
13																	۰	
Z			-					-								3	02	
SPURIOUS																		
NO RECORD								\$	1						Total absolute accuracy = 81.5 % Total compensated accuracy = 73.4 %	ocumey = 81.5	K E	
MANUAL CLASS TOTAL	0	2	14	۰	0	_	0	80	15	û	6	٥	0	0	NOTE: B			
MANUAL GRAND TOTAL	124																	

B.E.1.4 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

SEGUIN, TX JANUARY 28 & 29, 1993 LANE 4

WIM CLASS							MANUAL CLASS	. CLASS							SPURIOUS	NO	AVCS	AVCS
	-	2	3	4	S	•	-	80	6	0	=	12	13	z			TOTALS	TOTALS
-																	0	286
2																	o	
			2													-	4	
4			£	2			-		2								8	
3			8	2				-	-							3	۶	
9			-			6										_	72	
1																	0	
80		-	r	٥		=		29	\$							_	28	
6		2	-	-		-			386							-	392	
0.																	e	
=											-						•	
13											-						-	
13																	0	
z		1	-	1				4	=							00	26	
spurious																		
NO RECORD		43	30	7		2	_	82	=		6				Total absolute :	Total absolute accuracy = 63.0 % Total compensated accuracy = 55.1 %	55.1 %	
MANUAL CLASS TOTAL	0	47	104	61	0	33	2	25	419	0	17	0	0	0				
MANUAL GRAND TOTAL	306																	

B.E.1.5 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

SEGUIN, TX JANUARY 28 & 29, 1993 LANE 4

WIM CLASS							MANUAL CLASS	CLASS							SPURIOUS	NO	AVCS	AVCS
	-	2	e	4	5	۰	,	80	•	2	=	13	13	z	· · · · ·		TOTALS	TOTALS
-																	0	589
2																	0	
3			2					-								-	-	
4			3	2			1		2								*	
3			63	2				-	-							3	æ	
۰			1			61										-	77	
,																	0	
∞		-	3	9		П		8	٠							-	8	
٥		2	-	-		-			386							-	392	
92																	9	
Ξ								-			-						80	
12											-						-	
13																	٥	
z		-	-	-				4	=							80	8	
SPURIOUS																		
NO RECORD							-	8	=		6				Total absolute a Fotal compensat	Total absolute accuracy - 71.3 % Total compensated accuracy - 62.3%	× 62.3%	
MANUAL CLASS TOTAL	0	-	и	21	0	31	2	ક	419	0		0	0	0	NOTE: A			
MANUAL GRAND TOTAL	624																	

B.E.1.6 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

SEGUIN, TX JANUARY 28 & 29, 1993 LANE 4

WIM CLASS							MANUA	MANUAL CLASS							SPURIOUS	NO STECOL	AVCS	AVCS
	-	2	3	•	٠,	v	7	60	٥	0.	=	12	13	z		RECORD	TOTALS	GRAND
-																	d	
2																	,	âg G
3			a					-										
4			-	,			-									-	19	
							-		7								80	
,	T			7				-	-							3	7	
•			-			19										-	73	
7		Ī															0	
60		-	3	9		=		82	5							-	36	
6		2	-	-		-			386							_	102	
9																	•	
=								-			,							
12											-						• -	
13																	- 6	
z		1	-	-				4	=							۰	2	
SPURIOUS																•]	3	
NO RECORD									=		6				Total absolute a	Total absolute accuracy = 81.4 %	× ×	
MANUAL CLASS TOTAL	0	4	74	13	0	31	2	8	419	0	11	0	0	0	NOTE: B			
MANUAL GRAND TOTAL	624																	

B.F.1.1 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

KELSO, WA JULY 29, 1993

WIM CLASS							MANUAL CLASS	CLASS							SPURIOUS	NO RECORD	VAVCS	AVCS GRAND
	-	2	е	4	s	v	7	*	6	01	=	12	13	z			TOTALS	TOTALS
1																	0	п
2																	0	
3																	0	
4			-														1	
\$			S														\$	
9																	-	
,																	0	
8						2		3									\$	
6									53								83	
10													·				0	
11											2						2	
12												2					2	
13													2				2	
Z																	0	
SPURIOUS																		
NO RECORD			1						3						Total absolute a Total compensat	Total absolute accuracy = 84.0 % Total compensated accuracy = 73.3 %	* 73.3 *	
MANUAL CLASS TOTAL	0	0	7	0	0	3	0	3	36	0	2	2	2	0				
MANUAL GRAND TOTAL	27																	

B.F.1.2 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

KELSO, WA JULY 29, 1993

WIM CLASS							MANUAL CLASS	CLASS							SPURIOUS	NO RECORD	SCLASS AVCS	AVCS GRAND
	_	2	3	4	\$	و	1	&	6	01	11	12	13	z			TOTALS	TOTALS
1																	0	11
2																	0	
3																	0	
4			-														-	
5			8					-									\$	
9						_											-	
7																	0	
•						2		3									\$	
6									53								53	
10																	0	
11											2						2	
12												2					2	
13													2				2	
z																	0	
SPURIOUS																		
NO RECORD									3						Total absolute a	Total absolute accuracy = 85.1 % Total compensated accuracy = 74.3 %	% 74.3 %	
MANUAL CLASS TOTAL	0	0	9	0	0	3	0	3	98	0	2	2	2	0	NOTE: A			
MANUAL GRAND TOTAL	74																	

B.F.1.3 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

KELSO, WA JULY 29, 1993

7 8 9 10 11 12 13 N 3 53 2 2 2 4 2 2 2 5 3 4 6 6 6 2 2 2 0 NOTE: B	-						MANUAL CLASS	CLASS							SPURIOUS	NO RECORD	AVCS CLASS TOTALS	AVCS GRAND TOTALS
1 2 3 53	2 3			.	3	v	-		٥	<u>e</u>	=	13	13	z			5	9
1																	0	1,1
1 2 3 53 6 7 7 7 7 7 7 7 7 7			\Box														0	
2 3 53	\$	۶															s	
2 3 53	-																-	
1 2 3 53																	0	
2 3 53						-											-	
2 3 53																	0	
3 0 3 56 0 2 2 0 NOTE: B						2		3									s	
3 0 3 56 0 2 2 0 NOTE: B									83								53	
3 0 3 56 0 2 2 0 NOTE: B																	·	
3 0 3 56 0 2 2 0 NOTE: B											2						2	
3 0 3 56 0 2 2 0 NOTE: B												2					2	
3 0 3 56 0 2 2 2 0 NOTE: B													7				2	
3 0 3 56 0 2 2 0																	0	
3 0 3 56 0 2 2 0																		
0 3 6 0 2 2 0									3						Total absolute ac Total compensate	xuracy = 91.9 of accuracy = 8	% % %	
	0 9 0		°		0	3	0	3	95	0	2	2	2	•	NOTE: B			

B.J.1.1 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

WOODBURN, OR.

MAY 20, 1993

} —	S GRAND S TOTALS	259	 3 T	T-	T		1	T	T	1	——————————————————————————————————————	Ī			T	T	T	T			T	9 5 %	Total percentage difference = 68.1 %		
AVCS	CLASS TOTALS	-		,	, 9	8	6 9	2 -	,		, -	312	=	۶	8	3 8	-	. 8	ř	3	7 8	e in	ge differen		
ON	RECORD																					Traini shashin alifficance	Total percent		
	61										L									1	-	-		~	
	<u>«</u>																		23		_			88	
	1.1																	¥	7		,	•		86	
	92			-												3	-							2	
	22									-		-		-	-	34		2			1			\$	
	4											1			22						2			×	
	13											-		8							-			6	
	12												16											91	
ASS	=					-				S		309	2	×		9					22			368	
MANUAL CLASS	01																							0	
MA	6									2											-			m	
	80								7															1	
	7													·										0	
	v						10																	01	
	s					8																		82	
	4			48																	-			49	
	3			-									\Box											1	
	2																							0	
	-																							0	
WIM CLASS		-	2	3	4	5	٥	7	8	6	10	=	12	13	41	15	16	1.1	18	19	0	SPURIOUS	NO RECORD	MANUAL CLASS TOTAL	

B.J.1.2 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

WOODBURN, OR. MAY 20, 1993

WIM CLASS									MAN	MANUAL CLASS	SSI									ON	AVCS	AVCS
		7	3	₹	'n	٠	7	8	6	01	=	12	<u></u>	4	5	2	12	<u>se</u>	6	RECORD	CLASS TOTALS	GRAND
-														\vdash	T						0	\$05
2															T							}
3			49													-					2	
4																					48	
8					82						-								T		2	
9						임						<u> </u>									2	
7														-							0	·
8								7				-	\vdash				-				,	
6									7		~			-	-	 					8	
01													 								0	
=											- 6 <u>6</u>		-	-	-			┢			312	
12											2	91					_				81	
13											8		•		-						35	
Ξ.														22	-						23	
15											6				*	6					8	
91																-					-	
17															2		× ×				. %	
18																_	~	ន			25	
19																			4		4	
0				-					-		22		-	7	4		2	_~	-		o	
SPURIOUS																				Total absolute difference = 72.2 %	difference = 7.	.2 %
NO RECORD																				Total percentage difference = 83.2 %	e difference =	83.2 %
MANUAL CLASS TOTAL	0	0	49	-	28	10	0	7	3	0	368	9	0	×	2	2	*	8	~	NOTE: C		
MANUAL BRAND TOTAL	637																			:		

B.M.1.1 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

BOW HILL, WA APRIL 13, 1993

							MANUA	MANUAL CLASS							SPURIOUS	ON	AVCS	AVCS
	_	2	3	4	S	۰	7	∞	6	Q	=	13	13	z		KECOKD	TOTALS	GRAND
-																		
2																		22
9																	0	
																	0	
1						-											1	
\$			-														4	
٥						4											4	
7																	0	
80								=									=	4
٥									12			-	_			-	7.4	
02												-					-	
=																		
12												2					,	
13													,			-	,	
N																	4	
SPURIOUS																	9	
NO RECORD			9					-							Total absolute t	Total absolute accuracy = 73.7 %	* 5	
MANUAL CLASS TOTAL	0	0	01	0	0	s	0	22	21	0	0	4	~	0			R 0.000	
MANUAL GRAND TOTAL	57																	

B.M.1.2 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY APRIL 13, 1993 BOW HILL, WA

AVCS GRAND TOTALS 22 AVCS CLASS TOTALS = 2 0 Total compensated accuracy = 66.7 % Total absolute accuracy = 82.4 % NO RECORD SPURIOUS NOTE: A z 0 <u>--</u> ~ 2 ~ = 0 2 0 7 7 MANUAL CLASS 2 0 9 S 0 0 WIM CLASS SPURIOUS NO RECORD MANUAL CLASS TOTAL MANUAL GRAND TOTAL 의 = 2 2 z

B.M.1.3 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

BOW HILL, WA APRIL 13, 1993

WIM CLASS							MANUAL CLASS	r crass							SPURIOUS	ON O	AVCS	AVG
	-	7	3	4	۶	٥	-	·		2	=	12	52	z		NECOND	TOTALS	TOTALS
-																		
2																	0	23
-			,					T									0	
			•					1									4	
4						-											-	
3																		
٥						4												
,																	4	
\$								=									o l	
6																	=	
2							T		5			-	-			-	R	
:					1							-					1	
=																	0	
12,												7				_	-	
13													-					
z																	,	
SPURIOUS																		
NO RECORD								-							Total absolute	Total absolute securacy = 90.2 %	1 18. §	
MANUAL CLASS TOTAL	0	0	-	0	0	~	0	2	7.	0	0	4	~	0	NOTE: B	NOTE: B	£	
MANUAL GRAND TOTAL	15																	
																		-

B.M.1.4 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

BOW HILL, WA JUNE 25, 1993

WIM CLASS							MANUAL CLASS	. CLASS							SPURIOUS	NO RECORD	AVCS	AVCS
	-	2	3	4	s	٥		80	•	2	=	12	13	z			TOTALS	TOTALS
_																	-	310
2																	0	
3																	٥	
4			-	2													3	
۶			30			-			-								32	
9				1		12											13	
,																	0	
80								61	2			80					29	
6								-	161		-						193	
01									2	61							21	
=											٥						\$	
12																	0	
13													E				13	
z																	0	
SPURIOUS																		
NO RECORD			24					-							Total absolute a Total compensate	Total absolute scenarcy = 78.0 % Total compensated scenarcy = 67.6 %	* 67.6	
MANUAL CLASS TOTAL	0	0	55	3	0	13	0	22	8	<u>e</u>	1	∞	13	0				
MANUAL GRAND TOTAL	336																	

B.M.1.6 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY BOW HILL, WA JUNE 25, 1993

AVCS GRAND TOTALS 310 AVCS CLASS TOTALS 33 8 0 8 2 7 0 2 0 Total compensated accuracy = 92.0 % Total absolute accuracy = 93.6 % NO RECORD SPURIOUS NOTE: B 0 z 2 2 2 2 = 2 <u>\$</u> <u>•</u> <u>5</u> 7 8 MANUAL CLASS <u>\$</u> 22 0 2 $\underline{\underline{}}$ 尽 • Ē 0 312 WIM CLASS SPURIOUS NO RECORD MANUAL CLASS TOTAL MANUAL GRAND TOTAL = 2 2 =

B.M.1.5 - AUTOMATIC VEHICLE CLASSIFICATION ACCURACY

BOW HILL, WA JUNE 25, 1993

WIM CLASS							MANUAL CLASS	CLASS							SPURIOUS	NO RECORD	AVCS	AVCS
	-	2	3	4	~	۰	,	•	•	2	=	13	13	z			TOTALS	TOTALS
-																	-	310
2																	0	
3																	0	
P			-	2													3	
\$			ક્ષ			-			-								32	
9				-		12											13	
,																	۰	
•								19	2			æ					82	
٥								-	161		-						81	
0									~	6							72	
=											9						9	
13																	0	
13													13				13	
z																	•	
SPURIOUS																		
NO RECORD								-							Total absolute accuracy = 84.0 % Total compensated accuracy = 72	Total absolute accuracy = 84.0 % Total compensated accuracy = 72.8 %	× 7. × ×	
MANUAL CLASS TOTAL	0	0	31	3	0	13	0	n	8	61	,	∞	13	0	NOTE: A			
MANUAL GRAND TOTAL	312																ı	

AXLE SPACING MEASUREMENT ACCURACY

This section presents the results of the automatic axle spacing measurement equipment assessment. This assessment compared manually measured axle spacings with the automatic axle spacing measurements recorded by the WIM equipment on a vehicle-by vehicle basis.

The results are presented in a tabular format which displays the manual and automatic axle spacings and vehicle wheelbase. Additionally, the percentage and absolute difference between the manual and automatic measurements are shown. Results for the following sites are presented:

- * Kelso,
- * Woodburn,
- * Bow Hill, and
- * Santa Nelia.

B.F.2.1 - AXLE SPACING MEASUREMENT ACCURACY

KELSO, WA JULY 29, 1993

MEASURED AXLE SPACING (R)	MEASURED AXLE SPACING (n)	MEASURED AXLE SPACING (ft)	ED AXLE SPACING (A)	SPACING					WIM	WIM AXLE SPACING (f)	CING			`	ABSOLUTE DIFFERENCE (A)	E DIFFE	RENCE		VEHICLE ABS.
1 2 3 4 5 6 7 1	2 3 4 5 6 7 1	3 4 5 6 7 1	4 5 6 7 1	5 6 7 1	6 7 1	7 1	-	2	3	4	~	2 3 4 5 6 7	_	2	9	4	1 2 3 4 5 6	7	DIFF.
13.8 4.4 27.0 4.1	27.0 4.1	4.1	4.1	13.9	13.9	13.9	13.9	4.5	1.12	1.4			9.1	1.9	0.7	8			8
18.0 4.5 20.8 4.3	20.8 4.3	4.3		18.3	18.3	18.3	18.3	4.5	212	4			 0.3	0.0	0.4	0.1			0.8
18.8 4.3 31.3 4.2	31.3 4.2	4.2		19.4	19.4	19.4	19.4	4.4	32.2	4.3			 9.0	1.0	6.0	0.1			1.1
10.0 7.8 4.4 30.3 4.0 4.3 10.3	4.4 30.3 4.0 4.3	30.3 4.0 4.3	4.0 4.3	4.3	<u> </u>	10.3	10.3	1.9	4.5	31.3	4.2	4 3	 0.3	0.1	1.0	0.2	0.0		1.7
10.4 4.3 20.9 9.2 22.3 10.5	9.2 22.3	9.2 22.3	22.3	-	10.5	10.5	10.5	4.3	21.2	9.3	22.9		 0.1	0.0	0.3	0.1	9'0		7

Absolute difference per axle spacing (ft)	Mean 0.3 S.D.(s) 0.3 Sample Size 23
Absolute difference per vehicle (ft)	Mean 1.2 S.D.(s) 0.4 Sample size 5

1 138 4.4 27.0 4.1 1.2 3 4 5 6 7 1 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 1 1 2 3 14 5 6 7 1 1 1 2 3 14 5 6 7 1 1 1 1 2 1 3 1 1 2 1 3 1 1 2 1 3 1 1 2 1 3 1 1 3 1 2 1 1 3 1 3	VEHICLE NO.			MEASURI	ED AXLE (ft)	MEASURED AXLE SPACING (ft)	-				WIM A	WIM AXLE SPACING (f)	CING				-	PERCENTAGE DIFFERENCE (%)	GE DIFF	ERENCE			VEHICLE PERCNT.
44 770 4.1 0.7 23 2.6 0.0 45 20.8 4.4 31.2 4.4 31.2 4.4 32.2 4.4 43 31.3 4.2 4.3 31.2 4.3 3.2 2.3 2.9 2.4 78 4.4 30.3 4.0 4.3 31.3 4.2 4.3 30 1.3 2.3 2.3 2.0 0.0 4.3 20.4 30.5 4.3 31.2 9.3 22.9 1.0 0.0 1.4 1.1 2.7 Percentage difference (%) Percentage difference (%) Percentage difference (%)		_	7	3	4	~	v	7	_	2	3	4	\$	و	_	_	2	3	4	~	۰	7	DIFF.
4.5 20.8 4.3	-	13.8	4.4	27.0	1.4				13.9		27.7	4.1				0.7	2.3	2.6	0.0				1.8
4.3 31.3 4.2 32.2 4.3 32.2 4.3 2.9 2.4 7.8 4.4 30.3 4.0 4.3 31.3 4.2 4.3 3.0 1.3 2.3 3.3 5.0 0.0 4.3 30.9 9.2 22.3 10.5 4.3 21.2 9.3 22.9 1.0 0.0 1.4 1.1 2.7 Percentage difference (%)	72	18.0	4.5	8.02	4.3				183	4.5	21.2	4.4				1.7	0.0	6 -	2.3				1.7
7.8 4.4 30.3 4.0 4.3 10.3 7.9 4.5 31.3 4.2 4.3 3.0 1.3 2.3 3.3 5.0 0.0 14 1.1 2.7 10.5 4.3 21.2 9.3 22.9 1.0 0.0 1.4 1.1 2.7 1.0 0.0 0.0 1.4 1.1 2.7 1.0 0.0 0.0 1.4 1.1 2.7 1.0 0.0 0.0 1.4 1.1 2.7 1.0 0.0 0.0 1.4 1.1 2.7 1.0 0.0 0.0 1.4 1.1 2.7 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ю	18.8	4.3	31.3	4.2				19.4	4.4	32.2	4.3				3.2	2.3	2.9	2.4				2.9
4.3 20.9 9.2 22.3 10.5 4.3 21.2 9.3 22.9 1.0 0.0 1.4 1.1 2.7 Percentage difference (%) Percentage difference (%)	4	10.0	7.8	4.4	30.3	4.0	4.3		10.3	7.9		31.3	4.2	4.3		3.0	<u></u>	2.3	3.3	5.0	0.0		2.8
difference (%)	S	10.4	4.3	90.0	9.2	22.3			10.5	4.3	21.2	9.3	22.9			0.1	0.0	4.1		2.7			9:1
											Pe	rcent	age d	Ifferen	(6)	(%)		Pe	rcent	age d	liffer	suce	(%)

Percentage di per vehicle	Percentage difference (%) per vehicle	ntage di de spac	ifference (%)
Mean	2.2	Mean	1.9
S.D.(s)	9.0	S.D.(s)	1.3
Sample size	~	Sample Size 23	23

B.J.2.1 - AXLE SPACING MEASUREMENT ACCURACY

WOODBURN, OR MAY 20, 1993

VEHICLE NO.			MEASUR	RED AXLI	MEASURED AXLE SPACING (R)	9				WIM	WIM AXLE SPACING	ACING					ABSOLUTE DIFFERENCE	E DIFFER	ENCE			VEHICLE
	-	2	3	4	×	٥	,	-	2	F .	4	~	•	-	-	7	6	4	,		7	DIFF.
-	18.8	4.7	34.3	4.1				17.4	4.3	32.3	1.1				4:1	6.4	2.0	0.0				3.8
2	19.2	4.3	26.6	1.				19.2	4.3	26.8	4.0				0'0	0.0	0.2					1.0
m	14.9	4.4	28.9	4.1				1.51	4.2	28.1	4.0				0.2	-0.2	-0.2	-Q.I				-0.3
4	11.3	6.4	17.2	4.3				11.3	4.	17.1	4.2				0.0	0.1	9.1	1.0				0.1
vs.	17.7	43	15.2	23.1				17.7	4.3	15.2	23.1				0.0	0.0	0.0	0.0				0.0
•	13.1	£.	29.7	4.3				13.1	4.3	29.9	4.1				0.0	0.0	0.2	-0.2				0.0
	17.8	4.3	31.9	4.2				0.81	4.2	31.8	4.0			,	0.2	1.0	. ا	0.2				0.2
60	6.01	4.4	29.6	4.2				10.9	4.3	29.6	4 .				0.0	9.1	0.0	- - -				0.2
6	6.7	43	31.8	4.2				7.6	4.3	31.9	4.0				0.0	0.0	0.1	-0.2				Ģ
9	12.8	4.4	27.3	3.9	8.9	14.8	1.4	13.0	4.4	27.5	3.8	9.0	15.1	1 .	0.2	0.0	0.2		 	0.3	0.0	0.7
=	17.4	4.4	26.5	4.3				17.7	4.4	26.9	4.2			•	0.3	0.0	6.0	1.0				9.0
12	18.6	4.3	33.8	4.2				18.8	4.4	34.2	4.1				0.2	0.1	6.0	-0.1				9.0

ference sing (ft)	-0.1 0.4 51
Absolute difference per axle spacing (ft)	Mean S.D.(s) Sample Size
fference (ft)	-0.2 1.2 12
Absolute difference per vehicle (ft)	Mean S.D.(s) Sample size

VEHICLE NO.			MEASUR	MEASURED AXLE SPACING (f)	SPACING					WIM A	WIM AXLE SPACING (f)	ACING				ā.	PERCENTAGE DIFFERENCE (%)	GE DIFFI (%)	ERENCE			VEHICLE PERCNT.
	-	2	3	4	5	9	1	-	2	3	4	8	و	1	-	2	e a	4	~	٥	,	DIFF.
	8'81	4.7	34.3	4.1				17.4	4.3	32.3	4.1				-7.4	-8.5	-5.8	0.0				-6.1
	19.2	63	26.6	1.				19.2	4.3	26.8	4.0				0.0	0.0	8.0	-2.4				0.2
	14.9	4.4	28.9	1.				13.1	4.2	28.7	4.0				1.3	4.5	-0.7	-2.4				9.0
	11.3	4.3	17.2	43				11.3	4.	17.1	4.2				0.0	2.3	9.0	.2.3				-0.3
	17.7	4.3	15.2	23.1				17.7	4.3	15.2	23.1				0.0	0.0	0.0	0 0				0.0
	13.1	4.3	29.7	4.3				13.1	4.3	29.9	.				0.0	0.0	0.7	-4.7				0.0
	17.8	4.3	31.9	4.2			-	18.0	4.2	31.8	4.0				Ξ	.2.3	-0.3	4. 8.				-0.3
	6.01	4.4	29.6	4.2				10.9	4.3	29.6	1.4				0.0	-2.3	0.0	-2.4				9.0
	7.6	4.3	31.8	4.2				9.1	4.3	31.9	4.0				0.0	0.0	0.3	8.				-0.2
2	12.8	4.4	27.3	3.9	8.9	14.8	1.4	13.0	4.4	27.5	3.8	9.0	13.1	. .	9.1	0.0	0.7	-2.6	Ξ	2.0	0.0	6.0
	17.4	4.4	26.5	4. 3				17.7	4.4	26.9	4.2				1.7	0.0	2.	.2.3				=
	9.81	4.3	33.8	4.2				18.8	4.4	34.2	4.1				1.1	2.3	1.2	-2.4				0.1

Percentage difference (%) per axle spacing		S.D.(s) 2.4 Sample Size 51
Percentage difference (%) per vehicle	•	S.D.(s) 1.9 Sample size 12

B.M.2.1 - AXLE SPACING MEASUREMENT ACCURACY

BOW HILL, WA APRIL 14, 1993

VEHICLE NO.			MEASUR	ED AXLE	MEASURED AXLE SPACING (A)	(n)				WIM	WIM AXLE SPACING	ACING					ABSOLU	ABSOLUTE DIFFERENCE (A)	RENCE			VEHICLE
	-	2	e	-	~	۰	7	-	7	_	-	~	•	7	-	7	-	-	~	۰	-	DIFF.
_	13.4							2.51							9.1							0.1
~	15.3	2	7.7	2.7	2.7			14.9	4.3	24.3	2.7	2.7			0.4	Ģ.	-0.4	0.0	0.0			6.0
	18.5	3	30.7	4.0				18 .	4.3	30.3	1 .				9.0	0.0	0.4	0.1				-0.7
-	13.6	4.3	32.8	4.2				13.4	4.2	32.6	₹.				-0.2	.	-0.2	 9				9.0
s	16.6	4.3						197	4.2						-0.5	0.1						9.0
•	14.8	4.3	25.7	4.0	8.6	9.2	4.4	14.4	4.3	25.6	4.0	7.6	9.2	4.	6.0	0.0	0	0.0	.	0.0	0.0	9.0
_	12.0	5	17.3	9.3	8.02		. –	E.7	4.2	16.9	9.1	20.5			-0.3	 	ó. 4.	. .	-0.3			-1.2
00	8.81	£.	21.5	19.2	7			18.3	4.2	21.3	19.0	1 .			-0.5	-	-0.2	-0.2	0.0			0.1.
•	13.5							13.5							0.0							0.0
0	11.6	4.3	20.0	9.6	22.3			11.3	4.2	19.7	9.5	22.1			-0.3	6.1	-0.3	9.1	-0.2			0.1.

1	VEHICLE NO.			MEASU	RED AXL	MEASURED AXLE SPACING (ft)	<u>5</u>		_		WIM	WIM AXLE SPACING	PACING					PERCENTAGE DIFFERENCE	AGE DIFF	ERENCE			VEHICLE
13.4 15.3 4.4 24.7 2.7 2.7 2.7 14.9 4.3 24.3 2.7 2.7 2.5		-	7		4	s	۰	,	-	2	3	4	5	۰	,	-	2	•	ş -	~		7	PERCNI.
15.3 4.4 24.7 2.7 2.7 14.9 4.3 24.3 2.7 2.7 2.6 18.5 4.3 30.7 4.0 18.6 4.3 32.8 4.2 16.6 4.3 16.8 4.3 25.7 4.0 9.8 9.2 4.4 12.0 4.3 17.3 9.2 20.8 18.8 4.3 21.5 19.2 4.1 18.3 4.2 21.3 19.0 4.1 13.5 11.6 4.3 20.0 9.6 27.3 11.6 4.3 20.0 11.6 6.0 20.0 11.6 6.0 20.0 11.6 6.0 20.0 11.6 6.0 20.0 11.6 7.7 20.0 11.6 7.7 20.0 11.7 20.0 11.7 20.0 20.0 20.0 20.0 20.0 20.0 20.0	-	13.4							SE SE							3							
18.5 4.3 30.7 4.0 18.1 4.3 30.3 4.1 2.2 13.6 4.3 32.8 4.2 13.4 4.2 32.6 4.1 -1.5 16.6 4.3 13.7 4.0 9.8 9.2 4.4 4.3 25.6 4.0 9.7 9.2 4.4 2.7 12.0 4.3 17.3 9.2 20.8 11.7 4.2 16.9 9.1 20.5 2.5 18.8 4.3 21.5 19.2 4.1 18.3 4.2 21.3 19.0 4.1 2.7 11.6 4.3 20.0 9.7 9.0 4.1 2.7	7	15.3	4.4	24.7	2.7	2.7			14.9	4.3	24.3	2.7	7.7			3 5	ć	:		,			0.7
136 4.3 32.8 4.2 13.4 4.2 32.6 4.1 -1.5 166 4.3 148 4.3 25.7 4.0 9.8 9.2 4.4 4.3 25.6 40 9.7 9.2 4.4 -2.7 120 4.3 17.3 9.2 20.8 11.7 4.2 16.9 9.1 20.5 -2.5 188 4.3 21.5 19.2 4.1 18.3 4.2 21.3 19.0 4.1 2.7 11.6 4.3 20.0 9.6 27.3 13.5 13.5 13.5 13.5	•	18.5	€.	30.7	4.0				82	€,3	Ş		i		-	9.7.	ç.,	<u>.</u>	0.0	0.0			9.1.
16.6 4.3 14.8 4.3 25.7 4.0 9.8 9.2 4.4 4.3 25.6 4.0 9.7 9.2 4.4 -2.7 12.0 4.3 17.3 9.2 20.8 11.7 4.2 16.9 9.1 20.5 2.5 18.8 4.3 21.5 19.2 4.1 18.3 4.2 21.3 19.0 4.1 2.7 13.5 11.6 4.3 20.0 9.6 27.3 13.5 13.5 13.5	•	13.6	£	32.8	4.2				13.4	4.2	32.6					7.7.	0.0	7	2.5			•	-1.2
14.8 4.3 25.7 4.0 9.8 9.2 4.4 4.3 25.6 4.0 9.7 9.2 4.4 -2.7 12.0 4.3 17.3 9.2 20.8 11.7 4.2 16.9 9.1 20.5 4.4 -2.7 18.8 4.3 21.5 19.2 4.1 18.3 4.2 21.3 19.0 4.1 -2.7 13.5 11.6 4.3 20.0 9.6 27.3 13.5 13.5 10.0	~	9:91	4.3						2	;		;				<u>.</u>	5.7	9.0	-2.4				7
12.0	vo	8.	6.3	25.7	40	č	6	3	-	; ;	;	;	:			•3.0	-2.3						-2.9
18.8 4.3 21.5 19.2 4.1 18.3 4.2 21.3 19.0 4.1 2.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13	•	Š	:		} ;		1	ř	<u>.</u>		5.6	0	9.7	9.5	4.4	-2.7	0.0	4.0	0.0	0.1.0	0.0	0.0	9.0
18.8 4.3 21.5 19.2 4.1 18.3 4.2 21.3 19.0 4.1 2.7 13.5 13.5 13.5 19.0 4.1 0.0	•	7	ĵ	?: -	7.6	87.8				4.2	16,9	9.1	20.5			-2.5	-2.3	.2.3	-	4.4			6; -
13.5	x	8.8	.	21.5	19.2	1			18.3	4.2	21.3	19.0	4.1			-2.7	.2.3	6.0	0.1.	0.0			.l.
11.6 4.3 20.0 0.4 27.1	٥	13.5							13.5							0.0							6
11.3 4.2 19.7 9.3	10	9.11	4.3	0.02	9.6	22.3			11.3	4.2	19.7	9.5	22.1			-2.6	.2.3		9	9			} :

Percentage difference (%) per axle spacing	Mean -1.2 S.D.(s) 1.2 Sample Size 39
fference (%)	-1.2 1.0 10
Percentage difference (%) per vehicle	Mean S.D.(s) Sample size

B.M.2.2 - AXLE SPACING MEASUREMENT ACCURACY

BOW HILL, WA JUNE 25, 1993

VEHICLE NO.			MEASURE	ED AXLE	MEASURED AXLE SPACING (0)					WIM A.	WIM AXLE SPACING	CING				ABSOLU	ABSOLUTE DIFFERENCE (ft)	LENCE		VEHICLE ABS.
	-	7	3	-	s	٠	1	1 2 3 4 5 6 7	7		4	2	۰	 1 2 3	~	-	-	3	,	DIFF.
	13.3	4.3	30.5	4.1				13.5	£	30.5	±.			0.2	0.0	98	0.0			0.2
	19.8	£3	19.5	17.8				6.61	4.3	19.4	17.7			0.1	0.0	Ġ.	0.1			-0.1
	8.4	4.4	30.7	4.0				15.0	4.4	30.9	4.0			 0.2	0.0	0.2	0.0			9.4
	11.3	\$	28.8	4.				11.5	4.3	28.8	1 .			 0.2	0:0	0.0	0.0			0.2
	9.2	4.4	28.5	7				9.2	£.	23.5	4.5			 0.0	0.1	0.0	0.0			6.1
	17.1	4.3	27.8	6.0				12.4	4.4	28.2	Ŧ			0.3	<u>.</u>	6.4	. 0			6.0

Absolute difference per axle spacing (ft)	Mean 0.1 S.D.(s) 0.1 Sample Size 24
Absolute difference per vehicle (ft)	Mean 0.3 S.D.(s) 0.4 Sample size 6

VEHICLE NO.			MEASUR	MEASURED AXLE SPACING (A)	SPACING	re				WIM A	WIM AXLE SPACING	CING				14	RCENTA	PERCENTAGE DIFFERENCE	RENCE			VEHICLE
	-	2	8	4	3	٥	-	-	~	-	4	\$ 6	9	-	_	2	F .	4	2	5 6	1	DIFF.
-	13.3	4.3	30.5	3				13.5	ţ.	30.5	1.				2	0.0	0.0	0.0				16
~	19.8	6.5	19.5	17.8				6.61	4.3	19.4	17.7				0.5	0.0	6.6	9.0				6.2
		4.4	30.7	0.4				15.0	4.4	30.9	0.4				2	0.0	0.7	0.0				6.7
*	11.3	£.3	8.8	1,				11.5	4.3	8.8	7				8 9.	0.0	0.0	0.0			,	
8	9.2	4. 4.	28.5	Ţ				9.2	4.3	28.5	.				0.0	-2.3	0.0	0.0				60
9	12.1	4.3	27.8	4,0				12.4	12.4 4.4 28.2	28.2	4.1				2.5 2.3 1.4	2.3	4.	2.5				} <u>°</u>

Percentage difference (%) Percentage difference (%) per vehicle per axle spacing

Mean 0.5 Mean 0.5 S.D.(s) 1.1 Sample size 6 Sample Size 24

B.O.2.1 - AXLE SPACING MEASUREMENT ACCURACY

SANTA NELLA, CA MAY 7, 1993 LOW SPEED WIM

VEHICLE NO.			MEASUR	(A)	MEASURED AXLE SPACING (A)					WIM	WIM AXLE SPACING	ACING					ABSOLL	ABSOLUTE DIFFERENCE (ft)	RENCE		VEHICLE ABS.
		2	3	4	~	v	7	-	2	3	4	s	۰	7	_	2	6	4	~	7	DIFF.
-	9.81	4.3	29.3	4.1				18.4	4.5	29.6	4.1				-0.2	0.3	6.4	0.0			0.4
۲۱	19.0	4.3	31.3	1.				19.4	4.5	31.9	1.				4.0	0.3	9.0	0.0			1.2
М	12.6	21.0	9.3	22.0				12.8	21.5	9.6	22.3				0.2	0.5	4.0	0.3			4.
4	17.2	4.3	30.2	10.1				17.3	4.2	30.3	10.0				0.1	0	0.1	9.1			0.1
s	16.6	ţ.	31.8	4.0				6.91	4.5	32.5	4.1				0.3	0.3	8'0	0.1			3
v	15.0	4.3	31.3	.				15.5	4.4	32.1	4.0				0.5	0.2	6.0	-			7
,	17.4	£	30.6	7				17.4	4.4	30.9	4.0				0.0	0.2	0.3	1'0			0.4
*	1.6	4.3	33.7	1.4				F.	4.4	34.3	4.0				0.0	0.1	90	0.1			0.7
٥	10.3	20.3	9.3	21.3			•	10.5	50.9	9.5	22.3			·	0.3	0.7	0.3	0.1			2.1
0	1.2	43	30.5	4.0				11.5	4.2	31.3	4.0				0.3	0.1	8.0	0.0			Ξ
=	10.1	21.3						0.0	21.4						- - Θ	0.2					0.1
12	16.3	4.3	30.4	. 4				16.1	4.5	30.9	4.0				-0.2	0.2	0.5				0.4
13	17.4	4.3	8.4	17.2				17.4	4.2	20.4	17.5				0.0	. 0.1	0.0	0.3			0.2
4	12.0	4.3	33.2	4.1				12.0	4.2	33.4	1 .				0.0	0.1	0.2	0.0			0.2
15	13.1	4.3		9.3				15.3	4.5		9.7				0.2	0.2		0.4			a c

Absolute difference per axle spacing (ft)	Mean 0.2 S.D.(s) 0.3 Sample Size 57 (continued)
fference (ft)	0.8 0.6 15
Absolute difference per vehicle (ft)	Mean S.D.(s) Sample size

VEHICLE NO.			MEASUR	ED AXLE (A)	MEASURED AXLE SPACING (ft)					MIM /	WIM AXLE SPACING (ft)	CING				۵.	ERCENT	PERCENTAGE DIFFERENCE (%)	ERENCE			VEHICLE PERCNT.
	-	2	3	4	\$	9	1	-	2	3	٩	۶	۰	7	_	7	3	4	~	۰	7	DIFF.
-	18.6	4.3	29.3	4.1				18.4	4.5	29.6	4.1			-	-1.0	5.9	1.2	0.5				8.0
2	19.0	4.3	31.3	1.4				19.4	4 5	31.9	-				2.1	5.9	8:1	0.5				2.1
m	12.6	21.0	9.3	22.0				128	21.5	96	22 3				1.7	2.4	3.8	4.1				2.1
4	17.2	4.3	30.2	10.1				17.3	4.2	30.3	10 0				8.0	-3.0	0.5	8.0				0.1
×	9.91	4.3	31.8	4.0				16.9	4.5	32.5	-				6.1	5.9	2.4	2.5				2.5
۰	15.0	4.3	31.3	1.4				15.5	4	32.1	4 0				3.3	3.5	2.7	-2.0				2.6
	17.4	4.3	30.6	1.4				17.4	4.4	30.9	4 0				- 0 .	3.5	0.1	-2.0				0.7
00	9.1	4.3	33.7	1 .				7.	4.4	34.3	40			•	0.2	9:1	6.1	-2.0				E.1
6	10.3	20.3	9.3	21.3				10.5	50.9	9.5	22.3				2.4	3.2	2.7	4.5				3.5
2	11.2	4.3	30.5	4.0				11.5	4.2	31.3	4.0				3.0	-1.2	5.6	0.0				2.2
=	10.1	21.3						0.01	21.4						8.0-	0.7						0.2
22	16.3	4.3	30.4	4.1				16.1	4.5	30.9	4.0				6.0-	3.9	9.1	-2.0				8.0
13	17.4	4.3	20.4	17.2				17.4	4.2	20.4	17.5				9.1	.3.0	-0.1	2.0				0.3
4	12.0	4.3	33.2	1.4				12.0	4.2	33.4	1.4				0.0	-1.2	0.7	0.5				0.4
15	15.1	4.3		9.3				15.3	4.5		9.7				1.5	3,9		4.0				2.6

itage d	Mean 1.3
le spac	S.D.(s) 2.2

Note: Reading 3 for vehicle no. 15 has been rejected, as it is considered shrormal. The manual measurement is 19.6 ft and the WIM reading is 28.2 ft. This gives an absolute difference of 8.6 ft, which is 35 s.d. from the mean of all the other observations.

B.O.2.2 - AXLE SPACING MEASUREMENT ACCURACY

SANTA NELLA, CA JUNE 29, 1993 LOW SPEED WIM

VEHICLE ABS.	DIFF.	6.1-	1.3	-4.2	-4.0	-4.9	<i>L.</i> 1.	-0.5	1.2	-4.7	-0.3	6.1.	-0.9	.2.3	5.2	9:	3.5	3.7	4.	1.3	
	7	T									•		•			•					
	9																				
ENCE	5														9:						
: DIFFERI	4		-0·1	-0.3	-0.4	-0.3	-0.2	- 0	0.2	9.4	0.3	-0.2	. .	-0.2	0.8		0.0	·0.1	2.5	-0.2	•
ABSOLUTE DIFFERENCE (ft)	-	9.0-8	6.0	-3.3	-2.6	.2.4	-0.9	-0.2	3.5	-3.0	0.1	-0.9	D. 8.0-	0.1.		.O. 4					0.0
A.	2			-0.3	-0.3 -2	-0.4	.0.2 .d	-0.2							1. 2.9		31	2.9	9.0		9.0
	_	-0.9	7 0.0						.0.1	0 -0.3	4 -0.1	6 -0.2	2 -0.1	9 -0.2	1.0	7 -0.5	9	.0	6.0-	6.0	-0.1
		9	0.7	-0.3	-0.7	÷.	.O.	0.0	0.0	-1.0	-0.4	9.0	-0.2	-0.9	0.0	0.7	0.5	0.8	0.1	0.7	-0.2
	,																				
	٥																				
WIM AXLE SPACING (f)	~														24.0						
M AXLE !	4	4.0	4.	3.8	3.7	3.9	3.9	4.0	4 0	3.8	21.9	4.0	4.0	4.0	10.6		4	4.1	20.0	21.0	-4
ılw.	3	26.5	29.9	25.8	32.0	31.4	32.4	28.6	36.8	29.9	10.2	30.0	32.4	31.0	23.4	17.1	34.0	35.0	13.0	11.0	34.0
	2	4.2	4.	4.	4.	3.9	4.2	. 4	4.3	.	20.8	4.3	6.3	₹	4.3	4.0	4.3	4.5	15.0	23.0	4.3
	-	17.4	12.0	19.3	15.5	4.4	17.2	18.0	13.2	16.1	13.2	18.2	15.0	16.8	11.2	10.6	20.0	13.0	0:11	12.0	14.0
	7																				
	٠																				
SPACIN	8														22.0						
ED AXLE	4	4.1	4.2	1 .	1 .	4.2	.	- -	4.2	4.2	21.6	4.2	1.4	4.2	8.6		<u></u>	4.2	17.0	21.6	4.1
MEASURED AXLE SPACING (ft)	3	27.3	29.0	29.1	34.6	33.8	33.3	28.8	35.3	32.9	10.3	30.7	32.9	32.0	20.5	17.5	30.9	32.5	11.7	0.11	33.0
	7	t 3	4.4	4.	4.	£3	4.4	£.	4.4	4.4	50.9	4.5	4.4	£	4.4	4.5	4.4	4.4	16.3	21.9	4.4
	-	18.3	11.3	9.61	16.2	16.2	17.6	18.0	13.2	17.1	13.6	8.8	15.2	17.7	11.2	11.3	19.5	12.2	8.11	=	14.5
VEHICLE NO.		-	7	6	4	v,	۰	,	60	6	2	=	2	E .	4	22	91	11	92	٥	8

VEHICLE			MEASUR	MEASURED AXLE SPACING	SPACING					WIM A	WIM AXLE SPACING	CING					ERCENT	AGE DIF	PERCENTAGE DIFFERENCE			VEHICLE
ġ				€			1				€			1				€				PERCNT.
	-	2		4	8	v	,	-	2	3	4	8	9	7	-	7	e	4	S	۰	•	
	18.3	4.3	27.3	4.1				17.4	4.2	26.5	4.0				4.9	-2.3	-2.9	2.4				-3.5
7	11.3	4.4	29.0	4.2				12.0	4.4	29.9	. .			··· ·	6.2	0.0	3.1	-2.4				3.1
ю	9.61	4.	29.1	. .				19.3	1.1	25.8	3.8				i.5	6.8	-11.3	-7.3				-7.3
4	16.2	4.	34.6	1.1				15.5	4.1	32.0	3.7				4.3	9.9	-7.5	8.6.				-6.7
٧.	16.2	4.3	33.8	4.2				4.4	3.9	31.4	3.9				.	.9.3	-7.1	.7.1				4.8-
9	17.6	4.4	33.3	1.				17.2	4.2	32.4	3.9				-2.3	4.5	.2.7	-4,9				-2.9
7	18.0	4.3	8.82	.				0.81	4.1	28.6	4.0				0.0	1.4.	0.7	-2.4				-0.9
•	13.2	4.	35.3	4.2				13.2	4.3	36.8	0.4				0.0	-2.3	4.2	4.8				2.1
۰	17.1	4.4	32.9	4.2				16.1	1.4	29.9	3.8				-5.8	9.9	.9.1	5.6.				-8.0
01	13.6	6:02	10.3	21.6				13.2	8.02	10.2	21 9				-2.9	-0.5	0° F	4.				-0.5
=	18.8	4.5	30.7	4.2				18.2	4.3	30.0	4.0				-3.2	4.4	.2.9	8.				.3.3
12	15.2	4.4	32.9	1.4				15.0	4.3	32.4	4.0				÷ ;3	-2.3	÷.:5	-2.4				971-
13	17.7	4.3	32.0	4.2				8.91	1.1	31.0	4.0				-5.1	-4.7	3.1	8.				-4.0
4	11.2	4.4	20.5	8.6	22			11.2	4.3	23.4	9.01	24.0			0.0	-2.3	14.1	8.2	7.1			7.6
15	11.3	4.5	17.5					9.01	4.0	17.1					.6.2	i.i.	.2.3					6.4
2	19.5	4.4	30.9	4.2				20.0	4.3	94.0	4				2.6	-2.3	10.0	0.0				5.9
1.1	12.2	4.4	32.5	4.2				13.0	4.5	35.0	- .				9.9	2.3	8.9	-2.4				6.9
81	8.	16.3	11.7	17.0				0.11	15.0	13.0	0.02				8.5	-5.5	6.8	14.7				2.5
61	Ξ	21.9	0.11	21.6				12.0	23.0	0.11	21.0				6.3	₹.	-0.9	-0.9				2:0
æ	14.5	4.4	33.0	4.1			\exists	14.0	4.3	34.0	1,4				4.1-	2.3	2.4	0.0				6.0

Continued

Absolute diff per vehicle (f		Absolute difference axle space	
Mean	-0.5	Mean	-0.1
S.D.(s)	2.8	S.D.(s)	1.1
Sample size	20	Sample Size	80
Percentage d per vehicle	ifference (%)	Percentage di per axle space	
Mean	-1.0	Mean	-1.8
S.D.(s)	4.9	S.D.(s)	5.4
Sample size	20	Sample Size	80

B.O.2.3 - AXLE SPACING MEASUREMENT ACCURACY

SANTA NELLA, CA JUNE 30, 1993 LOW SPEED WIM

VEHICLE MEASURED AXLE SPACING NO. (ft)			MEASUR	ED AXLE	MEASURED AXLE SPACING (ft)					WIM /	WIM AXLE SPACING	CING					ABSOL	ABSOLUTE DIFFERENCE (ft)	ERENCE			VEHICLE ABS.
	-	2	3	4	3	۰	7	_	2	3	4	~	۰	,	-	2	3	4	~	۰	,	DIFF.
	18.1	4.4	31.4	4.2				17.5	1.4	30.1	4.0				9:0-	-0.3	-1.3	-0.2				-2.4
2	8.1	6.91	10.9	17.8				11.4	16.0	9701	17.7				4.0	6.0	-0.3	.0.1				1.1
m	12.9	4.4	31.1	4.0				12.7	4.2	30.7	3.9				0.2	-0.2	0.4	0.1				6.0
4	12.4	4.3	25.2	9.1				12.3	4.3	25.3	9.2				9.1	0.0	0.1	6.				0.1
٧,	19.7	£3	31.0	.				18.6	7	30.3	3.9				3	-0.2	-0.7	-0.2				-2.2
9	15.8							15.4							0.4							0.4
1	11.7	1.6.1	13.3	15.9				10.3	15.1	12.8	14.8				4.1.	0. i.	-0.5	7				-4.0
80	10.4	£	28.9	.			_ 	9.2	3.8	26.0	3.8				-1.2	-0.5	-2.9	-0.3				-4.9
6	1.6.1	17.1	12.8	16.8				15.4	15.4	=	14.0				-0.7	-1.7	1.7	.2.8				6.9
01	15.9	5	27.2	4.2				15.6	4.3	27.6	4.0				-0.3	0.0	6.0	-0.2				-0.1
=	13.2	6,	27.6	4				12.3	4.4	28.6	4.				6.0	0.1	1.0	0.0				0.2
12	10.1	17.3	10.5	17.1				9.4	16.0	10.0	8.91				0.7	÷.3	-0.5	-0.3				-2.8
13	13.4	4.3	30.5	4				12.8	1.	28.6	3.9				9.0	-0.2	-1.9	-0.2				-2.9
4	17.5	4.3	19.9	10.0	22.8			16.3	-	20.6	10.8	ĸ			7	÷0-	0.7	9.8	2.2			2.3
15	18.6	4.5	31.2	4,1				17.0	1.4	30.0	4.0				- 9	4.0	.1.2	ę				.,

Continued

												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
VEHICLE NO.			MEASUR	ED AXLE	MEASURED AXLE SPACING (f)					WIM	WIM AXLE SPACING	CING				•	ABSOLUI	ABSOLUTE DIFFERENCE (A)	RENCE		VEHICLE ABS.
	_	7	6	+	S	۰	7	-	7	3	4	3	۰	7	-	~	-	4	s	-	DIFF.
13	9.81	4.5	31.2	7				17.0	1.4	30.0	4.0				9.7	4.0	-1.2	9.1			-3.3
2	10.3	4.5	27.7	4.				10.3	4.5	32.4	4.2				0.0	0.0	4.7	0.1			8.4
17	8:	18.2	10.8	20.2				12.3	19.3	11.0	50.9				0.5	=	0.2	0.7			2.5
<u>«</u>	11.3	17.4						10.9	26.6						5.0	9.2					90 00
61	15.0	4.4	32.0	7				8.	1.1	78.7	3.9				-0.2	-0.3	-3.3	-0.2			0.4.
8	15.5							15.0							-0.5						-0.5
22	10.5	18.3	9.4	18.3			· · · ·	8.6	17.9	9.3	18.1				-0.7	0.4	. 0 .1	-0.2			4.1.4
22	14.3	17.6	11.0	0.81				0.4	18.1	11.4	19.3				-0.3	0.5	0.4	1.3			6.1
ជ	<u>.</u>	4.2	32.0	1.1				15.5	-	32.6	1.				9.0	9.1	9.0	0.0			-0·I
75	6.11	18.3	10.4	20.1				10.8	16.0	6.6	18.9				7	-2.3	-0.5	-1.2			-5.1
23	18.7	4.3	28.7	17				8	\$\$	8	4.0				1.3	0.2	0.3	-0.1			1.7

Absolute difference per vehicle (ft)	ference ft)	Absolute difference per axle spacing (ft)	erence ing (ft)
Mean	-0.9	Mean	-0.2
S.D.(s)	3.4	S.D.(s)	1.4
Sample size	25	Sample Size 93	93

Continued

VEHICLE NO.			MEASUR	(f)	MEASURED AXLE SPACING (ft)					WIM	WIM AXLE SPACING	WIM AXLE SPACING (f)				_	PERCENT	AGE DIF	PERCENTAGE DIFFERENCE (%)			VEHICLE
		2	3	4	\$	9	7		7	-	4	~	۰	1	-	7	-	4	~	9	7	DIFF.
_	18.1	4.4	31.4	4.2				17.5	<u> </u>	30.1	6.0				33	-6.8	4	8,				1
7	8.11	16.9	10.9	17.8				4.	16.0	9.01	17.7				-3.4	-5.3	-2.8	9.0				, e.
m	12.9	4.4	31.1	4.0				12.7	4.2	30.7	3.9				9. .	4.5	i.3	.2.5				7
4	12.4	£.	25.2	9.1				12.3	4.3	25.3	9.2				9.0-	0.0	9.0	2				0.2
v	19.7	6.3	31.0	<u>1</u> .				18.6	4.1	30.3	3.9				-5.6	-4.7	-2.3	6.4				3.7
v	15.8							15.4							-2.5							.2.5
۲	11.7	1.91	13.3	15.9				10.3	15.1	12.8	14.8				-12.0	-6.2	-3.8	6.9				7.0
œ	10.4	Ç	28.9	1.4				9.2	3.8	26.0	3.8				i.i.s	9.11.	10.0	-7.3				.01-
6	1.6.1	17.1	12.8	16.8				15.4	15.4	Ξ	14.0				4.3	6.6-	.(13.3	.16.7				
2	15.9	4.3	27.2	đ.				15.6	4.3	27.6	4.0				-1.9	0.0	2.1	4. 80.				9.7
=	13.2	4.3	27.6	4.				12.3	4.4	28.6	1.				9.9-	2.3	3.6	0.0			•	0.4
12	10.1	17.3	10.5	17.1				9.4	16.0	10.0	8.91				6.9-	5.7.	4. 86	1.				-5.1
13	13.4	4.3	30.5	1.				12.8	4	28.6	3.9			_	4. Si	-4.7	-6.2	4.9				\$.8.
4	17.5	4.3	19.9	10.0	22.8			16.3	7	97.0	10.8	ĸ			6.9-	-4.7	3.5	8.0	9.6			3.1
15	18.6	4.5	31.2	4.1				17.0	4.1	30.0	4.0				9.8-	-8.9	-3.8	-2.4				. 5.7

VEHICLE			MEASUR	UED AXLI	MEASURED AXLE SPACING					WIM.	WIM AXLE SPACING	CING					PERCENTAGE DIFFERENCE	GE DIFF	ERENCE			VEHICLE
Š				€							Ê							(%)				PERCNT.
	-	2	3	7	s	•	,	-	7	e	4	w	٠	7	-	7	3	4	85	۰	,	DIFF.
5	10.3	4.5	27.7	7.				10.3	4.5	32.4	42				0.0	0.0	17.0	2.4				10.1
11	# 8:	18.2	10.8	20.2				12.3	19.3	0.11	50.9			1	4.2	6.0	6:	3.5				4
81	<u>:</u>	17.4						6.01	36.6						-3.5	52.9					**********	30.7
6	15.0	4.4	32.0	4.				14.8	1.4	28.1	3.9				.1.3	ېز 80	-10.3	6.4				
æ	15.5							15.0							.3.2							! ;
77	10.5	18.3	9.4	18.3				9.8	17.9	6.9	<u> </u>				6.7	-2.2	<u> </u>	Ę				, ,
22	14.3	17.6	0.11	18.0				14.0	18.1	4.	19.3				-2.1	2.8	3.6	7.2				;
23	16.1	4.2	32.0	4				15.5	₹	32.6	1.				.3.7	-2.4	6:1	0.0				. 6
74	6.11	18.3	10.4	20.1				10.8	16.0	9.9	18.9				-9.2	-12.6	4.8	-6.0				. 4
25	18.7	4.3	78.7	4.1				æ	4,5	29	4.0				7.0	4.7	1.0	-2.4				30

Percentage difference (%) Percentage difference (%) per axle spacing

Mean -1.1 Mean -2.2

S.D.(s) 8.2 S.D.(s) 7.9

Sample size 25 Sample Size 93

WEIGH-IN-MOTION ANALYSIS

This section presents the results of the WIM equipment accuracy assessment. This assessment compared static axle, axle combinations and gross vehicle weights to the equivalent weight measured dynamically by the WIM on a vehicle-by-vehicle basis.

For each evaluation visit, the results are presented for both axle and gross vehicle weight. Tables show the absolute and percentage differences between static and dynamic weights in a series of weight ranges, and the calculated figures required to undertake a F test present results from the weight range analysis and gross vehicle weights. F tests are performed to identify significant differences between the mean percentage differences of each weight range. If significant differences are found between the means of each weight range, it can be concluded that there is a change in calibration with a changing vehicle weight. A third set of tables shows the results from t-tests that are performed between individual weight ranges. The t-test illustrates if the mean percentage differences of the pair of weight ranges are significantly different, enabling the nature of differences between weight range accuracies to be established.

Results for the following sites are presented:

- * Jefferson,
- * Ashland
- * Bakersfield.
- * South Phoenix,
- * Kelso,
- * Woodburn.
- * Bow Hill, and
- * Santa Nella.

WEIGH-IN-MOTION ANALYSIS

JEFFERSON, WA - APRIL 7, 1993

TABLE B.A.3.1 - WEIGHT RANGE ANALYSIS FOR AXLES

Weight	Sample		e Difference	Absolute I	
Range	Size	Mean	S.D.	Mean	S.D.
Less than 10,000 lbs	7	17.4	30.8	1.4	2.3
10,000 - 19,999 lbs	43	1.6	14.9	0.2	2.0
20,000 - 29,999 lbs	15	8.2	10.1	2.0	2.6
30,000 - 39,999 lbs	42	9.9	11.8	3.3	3.9
TOTAL	107	6.8	15.2	1.7	3.3

Mean absolute difference below 10,000 lbs is 1,400 lbs with a standard deviation is 2,300 lbs. Mean percentage difference above 10,000 lbs is 6.1% with a standard deviation is 13.5%.

TABLE B.A.3.2 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage D	ifference (%)	∑ (PD)² N	∑ (PD²)
Range	Size	Sum	Mean	.	
Less than 10,000 lbs	7	121.9	17.4	2122.9	7801.9
10,000 - 19,999 lbs	43	67.6	1.6	106.2	9469.9
20,000 - 29,999 lbs	15	123.0	8.2	1009.2	2431.4
30,000 - 39,999 lbs	42	417.5	9.9	4150.2	9882.9
TOTALS	107	730.0	6.8	7388.6	29586.2

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 802.6$$

Estimate of population variance based entirely on scatter among scores within the groups:

$$S_w^2 = 215.5$$
 $\frac{S_b^2}{S_w^2} = \frac{802.6}{215.5} = 3.73$

F value at 5% significance level = 2.70. Therefore at the 5% level reject the null hypothesis and conclude that there is a significant difference between the sample means.

TABLE B.A.3.3 - WEIGHT RANGE ANALYSIS FOR TRUCK WEIGHTS

Weight	Sample	Percentag	ge Difference	Absolute I	Difference 00 lbs)
Range	Size	Mean	S.D.	Mean	S.D.
Less than 60,000 lbs	6	11.0	16.7	4.2	6.1
60,000 - 69,999 lbs	3	0.9	13.6	0.7	8.5
70,000 - 79,999 lbs	21	9.6	10.7	7.3	8.3
More than 80,000 lbs	3	0.4	9.2	0.8	9.2
TOTAL	33	8.2	12.0	5.6	8.1

TABLE B.A.3.4 - F-TEST DATA FOR TRUCK WEIGHTS

Weight	Sample	Percentage D	ifference (%)	∑ (PD) ² N	$\sum (PD^2)$
Range	Size	Sum	Mean	"	
Less than 60,000 lbs	6	65.7	11.0	720.5	2109.3
60,000 - 69,999 lbs	3	2.7	0.9	2.5	369.8
70,000 - 79,999 lbs	21	201.5	9.6	1932.8	4216.6
More than 80,000 lbs	3	1.1	0.4	0.4	169.2
TOTAL	33	271.0	8.2	2656.1	6864.9

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 143.4$$

Estimate of population variance based entirely on scatter among scores within the groups:

$$S_w^2 = 145.1$$
 $\frac{S_b^2}{S_w^2} = \frac{143.4}{145.1} = 0.99$

F value at 5% significance level = 2.93. Therefore at the 5% level reject the null hypothesis and conclude that there is a significant difference between the sample means.

TABLE B.A.3.5 - COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
0-9,999 / 10,000-19,999	6	42	33.4	14.8	5.1	2.3	3.3	++
0-9,999 / 20,000-29,999	6	14	33.4	12.7	6.9	2.9	4.5	++
0-9,999 / 30,000-39,999	6	41	33.4	15.3	4.7	. 2.3	3.3	++
10,000-19,999 / 20,000-29,999	42	14	14.8	12.7	1.4	2.3	3.3	Ì
30,000-39,999 / 10,000-19,999	41	41	15.3	14.8	1.1	1.7	2.1	
30,000-39,999 / 10,000-19,999	41	14	15.3	12.7	1.5	1.5	3.3	

TABLE B.A.3.6 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
0-59,999 / 60,000-69,999	5	2	18.8	11.1	2.9	19.3	99.3	
0-59,999 / 70,000-79,999	5	20	18.8	11.3	2.8	2.7	4.1	+
0-59,000 / 80,000-	5	2	18.8	7.5	6.3	19.3	99.3	
70,000-79,999 / 60,000-69,999	2	20	14.2	11.1	1.6	3.5	5.9	
60,000-69,999 / 80,000-	2	2	11.1	7.5	2.2	19.0	99,0	
70,000-79,999 / 80,000-	20	2	14.2	7.5	3.6	19.0	99.4	

ASHLAND, OR - APRIL 5, 1993

TABLE B.B.3.1 - WEIGHT RANGE ANALYSIS FOR AXLES

Weight	Sample	Percentage	Difference %)		Difference
Range	Size	Mean	S.D.	Mean	S.D.
Less than 10,000 lbs	16	-0.5	17.0	-0.0	1.5
10,000 - 19,999 lbs	98	1.1	9.9	0.1	1.4
20,000 - 29,999 lbs	20	4.2	5.9	1.0	1.5
30,000 - 39,999 lbs	25	3.4	4.2	1.1	1.4
TOTAL	159	1.7	9.8	0.4	1.5

Mean absolute difference below 10,000 lbs is -500 lbs with a standard deviation of 17,000 lbs. Mean percentage difference above 10,000 lbs is 1.9% with a standard deviation of 8.7%.

TABLE B.B.3.2 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage Difference (%)		$\sum_{N} \frac{(PD)^2}{N}$	∑ (PD²)
Range	Size	Sum	Mean	.v	
Less than 10,000 lbs	16	-7.8	-0.5	3.8	4350.9
10,000 - 19,999 lbs	98	106.0	1.1	114.6	9526.6
20,000 - 29,999 lbs	20	83.6	4.2	349.8	1008.4
30,000 - 39,999 lbs	25	84.2	3.4	283.4	707.0
TOTALS	159	266.0	1.7	751.5	15593.0

Number of classes = K = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 102.2$$

$$S_w^2 = 95.8$$

$$\frac{S_b^2}{S_w^2} = \frac{102.2}{95.8} = 1.07$$

F value at 5% significance level = 2.60. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.B.3.3 - WEIGHT RANGE ANALYSIS FOR TRUCKS

Weight	Sample	}	ge Difference	Absolute Difference (x 1000 lbs)		
Range	Size	Mean	S.D.	Mean	S.D.	
Less than 49,999 lbs	8	1.4	7.8	1.0	2.9	
50,000 - 59,999 lbs	9	5.2	4.4	2.8	2.3	
60,000 - 69,999 lbs	14	-0.2	4.3	-0.1	2.8	
More than 70,000 lbs	14	2.1	4.3	1.6	3.2	
TOTAL	45	1.9 5.3		1.2	3.0	

TABLE B.B.3.4 - F-TEST DATA FOR TRUCK WEIGHTS

Weight	Sample	Percentage D	ifference (%)	\(\sum_{N} \) (PD) 2	∑ (<i>PD</i> ²)
Range	Size	Sum	Mean		
Less than 49,999 lbs	8	11.5	1.4	16.4	440.3
50,000 - 59,999 lbs	9	47.1	5.2	246.5	402.3
60,000 - 69,999 lbs	14	-2.9	-0.2	0.6	241.9
More than 70,000 lbs	14	28.9	2.1	59.6	294.6
TOTAL	45	84.6	1.9	323.1	1379.4

Number of classes = K = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_h^2 = 54.7$$

$$S_w^2 = 2.12$$

$$\underline{S}_{b}^{2} = \underline{54.7} = 2.12$$
 \underline{S}_{w}^{2}
25.8

F value at 5% significance level = 2.84. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.B.3.5 - COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
0-9,999 / 10,000-19,999	15	97	16.5	9.9	2.8	1.8	2.3	++
0-9,999 / 20,000-29,999	15	19	16.5	7.1	5.4	2.2	3.2	++
0-9,999 / 30,000-39,999	15	24	16.5	5.3	9.7	2.1	2.9	++
10,000-19,999 / 20,000-29,999	97	19	9.9	7.1	1.9	2.0	2.6	
10,000-19,999 / 30,000-39,999	97	24	9.9	5.3	3.5	1.8	2.4	++
20,000-29,999 / 30,000-39,999	19	24	7.1	5.3	1.8	2.0	2.7	

TABLE B.B.3.6 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
0-49,999 / 50,000-59,999	7	8	7.4	6.7	1.2	3.5	6.2	
0-49,999 / 60,000-69,999	7	13	7.4	4.2	3.1	2.8	4.4	+
0-49,000 / 70,000-	7	13	7.4	4.6	2.6	2.8	4.4	
50,000-59,999 / 60,000-69,999	8	13	6.7	4.2	2.5	2.8	4.3	+
50,000-59,999 / 70,000-	8	13	6.7	4.6	2.1	2.8	4.3	
70,000- / 60,000-69,999	13	13	4.6	4.2	1.2	2.6	4.0	

BAKERSFIELD, CA - APRIL 16, 1993

TABLE B.C.3.1 - WEIGHT RANGE ANALYSIS FOR AXLES

Weight	Sample	Percentag	ge Difference	Absolute Difference (x 1000 lbs)		
Range	Size	Mean	S.D.	Mean	S.D.	
Less than 10,000 lbs	12	-5.2	12.6	-0.4	1.1	
10,000 - 19,999 lbs	26	0.3	14.1	0.1	1.8	
20,000 - 29,999 lbs	6	-2.5	4.6	-0.7	1.3	
30,000 - 39,999 lbs	11	-3.3	8.4	-1.2	2.8	
TOTAL	55	-1.9	12.0	-0.4	1.9	

Mean absolute difference below 10,000 lbs is -400 lbs with a standard deviation of 1,100 lbs. Mean percentage difference above 10,000 lbs is -1.0% with a standard deviation of 11.8%.

TABLE B.C.3.2 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage D	Difference (%)	$\sum (PD)^2$	$\sum (PD^2)$
Range	Size	Sum	Mean	N	
Less than 10,000 lbs	12	-62.6	-5.2	326.6	2075.7
10,000 - 19,999 lbs	26	8.5	0.3	2.8	4951.7
20,000 - 29,999 lbs	6	-14.8	-2.5	36.6	141.6
30,000 - 39,999 lbs	11	-36.4	-3.3	120.3	882.9
TOTALS	55	-105.3	-1.9	486.2	7991.9

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 94.9$$

$$S_w^2 = 147.2$$

$$\frac{S_b^2}{S_w^2} = \frac{94.9}{147.2} = 0.64$$

F value at 5% significance level = 2.80. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.C.3.3 - WEIGHT RANGE ANALYSIS FOR TRUCKS

Weight	Sample	Percentag	ge Difference	Absolute Difference (x 1000 lbs)		
Range	Size	Mean	S.D.	Mean	S.D.	
Less than 50,000 lbs	4	-4.8	6.5	-1.2	2.2	
50,000 - 59,999 lbs	2	-0.6	2.2	-0.3	1.3	
60,000 - 69,999 lbs	2	-6.2	3.2	-4.3	2.3	
More than 70,000 lbs	8	-1.0	6.0	-0.9	4.6	
TOTAL	16	-2.5	5.6	-1.3	3.5	

TABLE B.C.3.4 - F-TEST DATA FOR TRUCK WEIGHTS

Weight	Sample	Percentage Difference (%)		∑ (PD) 2 N	∑ (<i>PD</i> ²)
Range	Size	Sum	Mean	4	
Less than 50,000 lbs	4	-19.0	-4.8	90.3	215.3
50,000 - 59,999 lbs	2	-1.1	-0.6	0.6	5.5
60,000 - 69,999 lbs	2	-12.4	-6.2	76.3	86.3
More than 70,000 lbs	8	-7.7	-1.0	7.4	259.8
TOTAL	16	-40.2	-2.5	174.6	566.9

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 24.6$$

$$S_w^2 = 32.7$$

$$\frac{S_b^2}{S_w^2} = \frac{24.6}{32.7} = 0.75$$

F value at 5% significance level = 3.26. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.C.3.5 - COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
10,000-19,999 / 0-9,999	25	11	13.8	13.2	1.1	2.6	4.0	
0-9,999 / 20,000-29,999	11	5	13.2	4.9	7.3	4.7	10.0	+
0-9,999 / 30,000-39,999	11	10	13.2	8.7	2.3	3.0	4.8	
10,000-19,999 / 20,000-29,999	25	5	13.8	4.9	8.1	4.5	9.5	+
30,000-39,999 / 10,000-19,999	25	10	13.8	8.7	2.5	2.7	4.3	
30,000-39,999 / 10,000-19,999	10	5	8.6	4.9	3.2	4.7	10.1	

TABLE B.C.3.6 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	Vı	V2	Sl	S2	F	F	F (1%)	
						(5%)		1
0-49,999 / 50,000-59,999	3	1	7.3	1.7	19.3	216.0	5403.0	
0-49,999 / 60,000-69,999	3	1	7.3	6.6	1.2	216.0	5403.0	
0-49,000 / 70,000-	3	7	7.3	5.7	1.6	4.4	8.5	
60,000-79,999 / 50,000-59,999	1	1	6.6	1.7	15.7	161.0	4052.0	
70,000- / 50,000-59,999	7	1	5.7	1.7	11.8	237.0	5928.0	
60,000-69,999 / 70,000-	1	7	6.6	5.7	1.3	5.6	12.2	

S. PHEONIX, AZ - MARCH 25, 1993

TABLE B.D.3.1 - WEIGHT RANGE ANALYSIS FOR AXLES

Weight	Sample	Percentag	ge Difference (%)	Absolute Difference (x 1000 lbs)		
Range	Size	Mean	S.D.	Mean	S.D.	
Less than 10,000 lbs	25	-7.0	14.5	-0.6	1.2	
10,000 - 19,999 lbs	47	-7.6	14.3	-1.0	1.9	
20,000 - 29,999 lbs	6	-10.4	9.9	-2.4	2.2	
30,000 - 39,999 lbs	14	-11.6	6.8	-3.9	2.3	
TOTAL	92	-8.2	13.2	-1.4	2.1	

Mean absolute difference below 10,000 lbs is -600 lbs with a standard deviation of 1,200 lbs. Mean percentage difference above 10,000 lbs is -8.7% with a standard deviation of 12.7%.

TABLE B.D.3.2 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage Difference (%)		\(\sum_{N}^{(PD)^{2}} \)	∑ (PD²)
Range	Size	Sum	Mean	-	
Less than 10,000 lbs	25	-176.1	-7.0	1239.8	6266.7
10,000 - 19,999 lbs	47	-357.1	-7.6	2713.0	12141.7
20,000 - 29,999 lbs	6	-62.1	-10.4	643.1	1137.4
30,000 - 39,999 lbs	14	-161.9	-11.6	1871.8	2467.0
TOTALS	92	-757.1	-8.2	6467.8	22012.7

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 78.9$$

$$S_w^2 = 176.6$$

$$\frac{S_b^2}{S_w^2} = \frac{78.9}{176.6} = 0.45$$

F value at 5% significance level = 2.70. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.D.3.3 - WEIGHT RANGE ANALYSIS FOR TRUCKS

Weight	Sample	Percentag	ge Difference	Absolute Difference (x 1000 lbs)		
Range	Size	Mean	S.D.	Mean	S.D.	
Less than 10,000 lbs	3	-4.5	7.9	-0.6	1.1	
10,000 - 19,999 lbs	3	1.5	11.3	0.2	2.3	
20,000 - 29,999 lbs	10	-7.8	10.8	-2.5	3.6	
30,000 - 39,999 lbs	2	-18.9	20.7	-8.6	9.3	
40,000 - 49,999 lbs	2	-9.1	10.2	-5.1	5.8	
50,000 - 59,999 lbs	4	-9.2	8.1	-6.0	5.1	
60,000 - 69,999 lbs	5	-13.4	5.1	-10.5	3.9	
More than 70,000 lbs	2	-1.5	10.6	-1.2	8.6	
TOTAL	31	-8.0	10.3	-4.3	5.4	

TABLE B.D.3.4 - F-TEST DATA FOR TRUCK WEIGHTS

Weight	Sample	Percentage Difference (%)		$\frac{\sum (PD)^2}{N}$	∑ (PD²)
Range	Size	Sum	Mean		
Less than 10,000 lbs	3	-13.4	-4.5	60.3	184.5
10,000 - 19,999 lbs	3	4.6	1.5	7.1	263.6
20,000 - 29,999 lbs	10	-77.7	-7.8	603.7	1655.1
30,000 - 39,999 lbs	2	-37.7	-18.9	711.8	1140.7
40,000 - 49,999 lbs	2	-18.2	-9.1	166.1	269.7
50,000 - 59,999 lbs	4	-36.8	-9.2	337.7	533.9
60,000 - 69,999 lbs	5	-67.0	-13.4	897.4	1002.3
More than 70,000 lbs	2	-2.9	-1.5	4.2	117.1
TOTAL	31	-40.2	-2.5	174.6	566.9

$$K = No.$$
 of classes = 8

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 112.3$$

Estimate of population variance based entirely on scatter among scores within the groups:

$$S_w^2 = 103.4$$
 $\frac{S_b^2}{S_w^2} = \frac{112.3}{103.4} = 1.09$

F value at 5% significance level = 2.44. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.D.3.5 - COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	VI	V2	S1	\$2	F	F	F	
						(5%)	(1%)	
30,000-39,999 / 0-9,999	46	24	16.1	15.8	1.0	1.9	2.5	
0-9,999 / 20,000-29,999	24	5	15.8	13.8	1.3	4.5	9.5	
0-9,999 / 30,000-39,999	24	13	15.8	13.3	1.4	2.4	3.6	
10,000-19,999 / 20,000-29,999	46	5	16.1	13.8	1.4	4.4	9.3	
10,000-19,999 / 30,000-39,999	46	13	16.1	13.3	1.5	2.3	3.4	
20,000-29,999 / 30,000-39,999	5	13	13.8	13.3	1.1	3.0	4.9	

TABLE B.D.3.6 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
20,000-29,999 / 10,000-19,999	2	2	9.4	7.8	1.4	19.0	99.0	
30,000-39,999 / 10,000-19,999	9	2	12.9	7.8	2.7	19.4	99.4	
40,000-49,999 / 10,000-19,999	1	2	23.9	7.8	9.3	18.5	98.5	
50,000-59,999 / 10,000-19,999	1	2	11.6	7.8	2.2	18.5	98.5	
60,000-69,999 / 10,000-19,999	3	2	11.6	7.8	2.2	19.2	99.2	
70,000-79,999 / 10,000-19,999	4	2	14.2	7.8	3.3	19.2	99.2	
10,000-19,999 / 80,000-	2	1	7.8	7.7	1.1	200.0	5000.0	
30,000-39,999 / 20,000-29,999	9	2	12.9	9.4	1.9	19.4	99.4	
40,000-49,999 / 20,000-29,999	1	2	23.9	9.4	6.5	18.5	98.5	
50,000-59,999 / 20,000-29,999	1	2	11.6	9.4	1.5	18.5	98.5	
60,000-69,999 / 20,000-29,999	3	2	11.6	9.4	1.5	19.2	99.2	
70,000-79,999 / 20,000-29,999	4	2	14.2	9.4	2.3	19.2	99.2	
20,000-29,999 / 80,000-	2	1	9.4	7.7	1.5	200.0	5000.0	
40,000-49,999 / 30,000-39,999	1	9	23.9	12.9	3.4	5.1	10.6	
30,000-39,999 / 50,000-59,999	9	1	12.9	11.6	1.2	241.0	6023.0	
30,000-39,999 / 60,000-69,999	9	3	12.9	11.6	1.2	8.8	27.3	
70,000-79,999 / 30,000-39,999	4	9	14.2	12.9	1.2	3.6	6.4	
30,000-39,999 / 80,000-	9	1	12.9	7.7	2.8	241.0	6023.0	
40,000-49,999 / 50,000-59,999	1	1	23.9	11.6	4.2	161.0	4052.0	
40,000-39,999 / 60,000-69,999	1	3	23.9	11.6	4.3	10.1	34.1	
40,000-39,999 / 70,000-79,999	1	4	23.9	14.2	2.8	7.7	21.2	
40,000-39,999 / 80,000-	1	1	23.9	7.7	9.7	161.0	4052.0	
50,000-59,999 / 60,000-69,999	1	3	11.6	11.6	1.0	10.1	34.1	
70,000-79,999 / 50,000-59,999	4	1	14.2	11.6	1.5	225.0	5625.0	
50,000-59,999 / 80,000-	1	1	11.6	7.7	2.3	161.0	4052.0	
70,000-79,999 / 60,000-69,999	4	3	14.2	11.6	1.5	9.1	28.7	
60,000-69,999 / 80,000-	3	1	11.6	7.7	2.3	216.0	5403.0	
70,000-79,999 / 80,000-	4	1	14.2	7.7	3.4	225.0	5625.0	

KELSO, WA - JULY 29, 1993

TABLE B.F.3.1 - WEIGHT RANGE ANALYSIS FOR AXLES

Weight	Sample	Percentage Difference (%)		Absolute Difference (x 1000 lbs)	
Range	Size	Mean	S.D.	Mean	S.D.
Less than 10,000 lbs	49	-17.7	14.4	-1.5	1.2
10,000 - 19,999 lbs	107	-15.7	13.9	-1.9	1.8
20,000 - 29,999 lbs	21	-15.0	17.2	-3.8	4.0
30,000 - 39,999 lbs	52	-16.3	15.7	-6.0	9.2
TOTAL	229	-16.2	14.7	-2.9	5.0

Mean absolute difference below 10,000 lbs is -1,500 lbs with a standard deviation of 1,200 lbs. Mean percentage difference above 10,000 lbs is -15.8% with a standard deviation of 14.7%.

TABLE B.F.3.2 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage Difference (%)		Percentage Difference (%)		∑ (PD) ²	∑ (PD²)
Range	Size	Sum	Mean	.			
Less than 10,000 lbs	49	-866.6	-17.7	15325.9	25315.6		
10,000 - 19,999 lbs	107	-1685.1	-15.7	26538.4	46927.0		
20,000 - 29,999 lbs	21	-315.3	-15.0	4734.3	10630.4		
30,000 - 39,999 lbs	52	-845.1	-16.3	13733.6	26265.6		
TOTALS	229	-3712.1	-16.2	60332.2	109138.6		

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 53.2$$

$$S_w^2 = 216.9$$

$$\underline{S}_{b}^{2} = \underline{53.2} = 0.25$$

F value at 5% significance level = 2.60. Therefore at the 5% level reject the null hypothesis and conclude that there is significant difference between the sample means.

TABLE B.F.3.3 - WEIGHT RANGE ANALYSIS FOR TRUCKS

Weight	Sample		ge Difference	Absolute Difference (x 1000 lbs)		
Range	Size	Mean	s.D.	Mean	S.D.	
0 - 29,999 lbs	10	-18.9	10.2	-4.7	2.9	
30,000 - 39,999 lbs	16	-18.6	3.6	-6.2	1.1	
40,000 - 49,999 lbs	7	-7.8	22.6	-3.6	10.0	
50,000 - 59,999 lbs	5	-15.2	3.2	-8.3	2.0	
60,000 - 69,999 lbs	5	-21.4	16.7	-14.1	10.6	
70,000 - 79,999 lbs	18	-13.1	8.6	-9.9	6.5	
More than 80,000 lbs	10	-13.7	13.0	-16.5	23.1	
TOTAL	71	-15.4	11.4	-8.8	10.6	

TABLE B.F.3.4 - F-TEST DATA FOR TRUCK WEIGHTS

Weight	Sample	Percentage D	Pifference (%)	$\frac{\sum (PD)^2}{N}$	∑ (PD²)
Range	Size	Sum	Mean	, a	
0 - 29,999 lbs	10	-188.9	-18.9	355.6	4487.0
30,000 - 39,999 lbs	16	-297.0	-18.6	5513.7	5704.6
40,000 - 49,999 lbs	7	-54.9	-7.8	431.2	3491.8
50,000 - 59,999 lbs	5	-75.9	-15.2	1151.4	1191.6
60,000 - 69,999 lbs	5	-107.1	-21.4	2295.2	3410.5
70,000 - 79,999 lbs	18	-235.0	-13.1	3067.4	4330.5
More than 80,000 lbs	10	-137.1	-13.7	1880.6	3407.7
TOTAL	71	-1095.6	-15.4	17895.1	26023.8

$$K = No. of classes = 7$$

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 164.7$$

Estimate of population variance based entirely on scatter among scores within the groups:

$$S_{yy}^{2} = 127.0$$

$$\underline{S}_{b}^{2} = \underline{164.7} = 1.30$$
 $\underline{S}_{b}^{2} = 127.0$

F value at 5% significance level = 2.25. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.F.3.5 - COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
0-9,999 / 10,000-19,999	48	106	22.7	20.9	1.2	1.5	1.8	
0-9,999 / 20,000-29,999	48	20	22.7	22.5	1.0	2.0	2.7	
30,000-39,99 / 0-9,999	51	48	22.5	22.7	1.0	1.6	2.0	
20,000-29,999 / 10,000-19,999	20	106	22.5	20.9	1.2	1.7	2.1	
30,000-39,999 / 10,000-19,999	51	106	22.5	20.9	1.2	1.5	2.0	
30,000-39,999 / 20,000-29,999	51	20	22.5	22.5	1.0	2.0	2.7	

TABLE B.F.3.6 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	VI	V2	S1	S2	F	F	F	
						(5%)	(1%)	
0-29,999 / 30,000-39,999	9	15	22.2	18.9	1.3	2.6	3.9	
40,000-49,999 / 0-29,999	6	9	22.3	21.2	1.1	3.4	5.8	
0-29,999 / 50,000-59,999	9	4	21.2	15.4	1.9	6.0	14.7	
60,000-69,999 /0-29,999	4	9	26.1	21.2	1.5	3.6	6.4	
0-29,999 / 70,000-79,999	9	17	21.2	15.5	1.9	2.5	3.7	
0-29,999 / 80,000-	9	9	21.2	18.5	1.3	3.2	5.4	
40,000-49,999 / 30,000-39,999	6	15	22.3	18.9	1.4	2.8	4.3	
30,000-39,999 / 50,000-59,999	15	4	18.9	15.4	1.5	5.9	14.2	
60,000-69,999 / 30,000-39,999	4	15	26.1	18.9	1.9	3.1	4.9	
30,000-39,999 / 70,000-79,999	15	17	18.9	15.5	1.5	2.3	3.3	
30,000-39,999 / 80,000-	15	9	18.9	18.5	1.0	3.0	5.0	
40,000-49,999 / 50,000-59,999	6	4	22.3	15.4	2.1	6.2	15.2	
60,000-69,999 / 40,000-49,999	4	6	26.1	22.3	1.4	4.5	9.2	
40,000-39,999 / 70,000-79,999	6	17	22.3	15.5	2.1	2.7	4.1	
40,000-39,999 / 80,000-	6	9	22.3	18.5	1.5	3.4	5.8	
60,000-69,999 / 50,000-59,999	4	4	26.1	15.4	2.9	6.4	16.0	
70,000-79,999 / 50,000-59,999	17	4	15.5	15.4	1.0	5.8	14.0	
80,000- / 50,000-59,999	9	4	18.5	15.4	1.4	6.0	14.7	
60,000-69,999 / 70,000-79,999	4	17	26.1	15.5	2.8	3.0	4.7	
60,000-69,999 / 80,000-	4	9	26.1	18.5	2.0	3.6	6.4	
80,000- / 70,000-79,999	9	17	18.5	15.5	1.4	2.5	3.7	

WOODBURN, OR - MARCH 8, 1993

TABLE B.J.3.1 - WEIGHT RANGE ANALYSIS FOR AXLES

Weight	Sample	Percentage Difference (%)		Absolute Difference (x 1000 lbs)	
Range	Size	Mean	Mean S.D.		S.D.
Less than 10,000 lbs	42	6.9	30.9	0.5	1.7
10,000 - 19,999 lbs	248	4.3	13.7	0.6	1.9
20,000 - 29,999 lbs	96	-0.8	5.5	-0.2	1.3
30,000 - 39,999 lbs	196	-0.9	4.8	-0.3	1.6
TOTAL	582	1.9	13.0	0.1	1.7

Mean absolute difference below 10,000 lbs is 500 lbs with a standard deviation of 1,700 lbs. Mean percentage difference above 10,000 lbs is 1.5% with a standard deviation of 10.3%.

TABLE B.J.3.2 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage D	ifference (%)	$\frac{\sum (PD)^2}{N}$	$\sum (PD^2)$
Range	Size	Sum	Mean		
Less than 10,000 lbs	42	288.8	6.9	1985.5	41187.0
10,000 - 19,999 lbs	248	1077.6	4.3	4682.6	51183.4
20,000 - 29,999 lbs	96	-73.3	-0.8	55.9	2890.2
30,000 - 39,999 lbs	196	-169.1	-0.9	145.9	4680.1
TOTALS	582	1124.0	1.9	6869.9	99940.6

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 1566.3$$

$$S_w^2 = 161.0$$

$$\underline{S_{b}}_{2}^{2} = \underline{1566.3}_{161.0} = 9.73$$

F value at 5% significance level = 2.60. Therefore at the 5% level reject the null hypothesis and conclude that there is a significant difference between the sample means.

TABLE B.J.3.3 - WEIGHT RANGE ANALYSIS FOR TRUCKS

Weight	Sample	Percentage Difference (%)		Absolute Difference (x 1000 lbs)	
Range	Size	Mean	Mean S.D.		S.D.
Less than 30,000 lbs	5	6.9	8.3	1.8	1.6
30,000 - 39,999 lbs	12	- 0.9	3.0	-0.3	1.0
40,000 - 49,999 lbs	5	-1.2	5.5	-0.4	2.5
50,000 - 59,999 lbs	20	-0.8	1.9	-0.4	1.1
60,000 - 69,999 lbs	9	-1.7	3.2	-1.1	2.2
70,000 - 79,999 lbs	85	-0.1	2.2	-0.0	1.6
More than 80,000 lbs	36	2.3	3.7	2.3	3.7
TOTAL	172	0.4	3.4	0.4	2.4

TABLE B.J.3.4 - F-TEST DATA FOR TRUCK WEIGHTS

Weight	Sample	Percentage D	ifference (%)	$\frac{\sum (PD)^2}{N}$	∑ (PD²)
Range	Size	Sum	Mean		
Less than 30,000 lbs	5	34.3	6.9	235.0	511.5
30,000 - 39,999 lbs	12	-10.8	-0.9	9.7	107.9
40,000 - 49,999 lbs	5	-5.8	-1.2	6.7	126.1
50,000 - 59,999 lbs	20	-15.6	-0.8	12.2	77.3
60,000 - 69,999 lbs	9	-15.6	-1.7	27.2	107.6
70,000 - 79,999 lbs	85	-4.9	-0.1	0.3	389.2
More than 80,000 lbs	36	82.7	2.3	189.9	8.6
TOTAL	172	64.2	0.4	481.0	1328.3

K = No. of classes = 7

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 76.2$$

Estimate of population variance based entirely on scatter among scores within the groups:

$$S_w^2 = 5.1$$

$$\frac{S_b^2}{S_{w^2}} = \frac{76.2}{5.1} = 14.83$$

F value at 5% significance level = 2.16. Therefore at the 5% level reject the null hypothesis and conclude that there is a significant difference between the sample means.

TABLE B.J.3.5 - COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	\$2	F	F (5%)	F (1%)	
0-9,999 / 10,000-19,999	41	247	31.3	14.4	4.8	1.4	1.6	++
0-9,999 / 20,000-29,999	41	95	31.3	5.5	32.6	1.6	1.9	++
0-9,999 / 30,000-39,999	41	195	31.3	4.9	40.8	1.4	1.6	++
10,000-19,999 / 20,000-29,999	247	95	14.4	5.5	6.9	1.3	1.4	++
10,000-19,999 / 30,000-39,999	247	195	14.4	4.9	8.6	1.0	1.0	++
20,000-29,999 / 30,000-39,999	95	195	5.5	4.9	1.3	1.3	1.4	+

TABLE B.J.3.6 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
0-29,999 / 30,000-39,999	4	11	10.1	3.0	11.3	3.4	5.7	++
0-29,999 / 40,000-49,999	4	4	10.1	5.0	4.1	6.4	16.0	+
0-29,999 / 50,000-59,999	4	19	10.1	2.0	25.5	2.9	4.5	++
0-29,999 / 60,000-69,999	4	8	10.1	3.5	8.3	3.8	7.0	++
0-29,999 / 70,000-79,999	4	84	10.1	2.1	23.1	2.5	3.6	++
0-29,999 / 80,000-	4	35	10.1	0.5	408.0	2.6	3.9	++
40,000-49,999 / 30,000-39,999	4	11	5.0	3.0	2.8	3.4	5.7	
30,000-39,999 / 50,000-59,999	11	19	3.0	2.0	2.3	2.4	3.4	
60,000-69,999 / 30,000-39,999	8	11	3.5	3.0	1.4	3.0	4.7	
30,000-39,999 / 70,000-79,999	11	84	3.0	2.1	2.0	1.9	2.5	+
30,000-39,999 / 80,000-	11	35	3.0	0.5	36.0	2.1	2.8	++
40,000-49,999 / 50,000-59,999	4	19	5.0	2.0	6.3	2.9	4.5	++
40,000-39,999 / 60,000-69,999	4	8	5.0	3.5	2.0	3.8	7.0	
40,000-39,999 / 70,000-79,999	4	84	5.0	2.1	5.7	2.5	3.5	++
40,000-39,999 / 80,000-	4	35	5.0	0.5	100.0	2.7	3.9	++
60,000-69,999 / 50,000-59,999	8	19	3.5	2.0	3.1	2.5	3.6	+
70,000-79,999 / 50,000-59,999	84	19	2.1	2.0	1.1	2.0	2.6	
50,000-59,999 / 80,000-	19	35	2.0	0.5	16.0	2.0	2.5	++
60,000-69,999 / 70,000-79,999	8	84	3.5	2.1	2.8	2.1	2.7	++
60,000-69,999 / 80,000-	8	35	3.5	0.5	49.0	2.2	3.1	++
70,000-79,999 / 80,000-	84	35	2.1	0.5	17.6	1.7	2.1	++
						İ		

BOW HILL, WA - APRIL 13, 1993

TABLE B.M.3.1 - WEIGHT RANGE ANALYSIS FOR AXLES

Weight	Sample	Percentage Difference (%)		Absolute Difference (x 1000 lbs)	
Range	Size	Mean	S.D.	Mean	S.D.
Less than 10,000 lbs	74	4.0	12.4	0.2	0.9
10,000 - 19,999 lbs	73	1.8	12.6	0.2	1.7
20,000 - 29,999 lbs	19	0.4	7.3	0.0	1.9
30,000 - 39,999 lbs	15	-6.6	15.5	2.1	5.1
TOTAL	181	1.9	12.6	0.0	2.1

Mean absolute difference below 10,000 lbs is 200 lbs with a standard deviation of 900 lbs. Mean percentage difference above 10,000 lbs is 0.4% with a standard deviation of 12.5%.

TABLE B.M.3.2 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage D	ifference (%)	∑ (PD)²	∑ (PD²)
Range	Size	Sum	Mean	.v	
Less than 10,000 lbs	74	293.7	4.0	1165.6	12425.8
10,000 - 19,999 lbs	73	134.3	1.8	247.1	11600.4
20,000 - 29,999 lbs	19	7.2	0.4	2.7	974.8
30,000 - 39,999 lbs	15	-98.6	-6.6	647.9	4011.1
TOTALS	181	336.6	1.9	2063.3	29012.2

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 479.1$$

$$S_w^2 = 152.3$$

$$\underline{S}_{b_{2}^{2}} = \underline{479.1} = 3.15$$

$$\underline{152.3}$$

F value at 5% significance level = 2.60. Therefore at the 5% level reject the null hypothesis and conclude that there is a significant difference between the sample means.

TABLE B.M.3.3 - WEIGHT RANGE ANALYSIS FOR TRUCKS

Weight	Sample		ge Difference	Absolute Difference (x 1000 lbs)		
Range	Size	Mean	S.D.	Mean	S.D.	
Less than 10,000 lbs	6	1.3	4.4	0.1	0.4	
10,000 - 19,999 lbs	5	2.1	6.7	0.4	1.1	
20,000 - 29,999 lbs	14	0.1	22.2	0.2	5.1	
30,000 - 39,999 lbs	13	4.2	4.3	1.5	1.5	
40,000 - 49,999 lbs	4	-1.7	8.4	-0.6	3.6	
50,000 - 59,999 lbs	3	4.4	2.0	2.5	1.3	
60,000 - 69,999 lbs	4	0.6	3.5	0.4	2.2	
70,000 - 79,999 lbs	7	-6.6	12.0	-5.1	9.4	
More than 80,000 lbs	4	1.5	4.1	1.3	3.7	
TOTAL	60	0.7	12.1	0.0	4.6	

TABLE B.M.3.4 - F-TEST DATA FOR TRUCK WEIGHTS

Weight	Sample	Percentage Difference (%)		$\frac{\sum (PD)^2}{N}$	∑ (PD²)
Range	Size	Sum	Mean		
Less than 10,000 lbs	6	8.0	1.3	10.7	106.2
10,000 - 19,999 lbs	5	10.7	2.1	22.9	202.6
20,000 - 29,999 lbs	14	1.4	0.1	0.1	6382.5
30,000 - 39,999 lbs	13	54.6	4.2	229.7	452.3
40,000 - 49,999 lbs	4	-7.0	-1.7	12.2	222.0
50,000 - 59,999 lbs	3	13.3	4.4	58.8	67.0
60,000 - 69,999 lbs	4	2.3	0.6	1.4	37.7
70,000 - 79,999 lbs	7	-46.3	-6.6	306.0	1177.1
More than 80,000 lbs	4	5.9	1.5	8.8	59.5
TOTAL	60	43.0	0.7	650.6	8707.2

K = No. of classes = 9

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 77.5$$

Estimate of population variance based entirely on scatter among scores within the groups:

$$S_w^2 = 158.0$$
 $\frac{S_b^2}{S_w^2} = \frac{77.5}{158.0} = 0.49$

F value at 5% significance level = 2.14. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.M.3.5 -COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	· S1	\$2	F	F (5%)	F (1%)	
0-9,999 / 10,000-19,999	73	72	13.0	12.6	1.1	5.2	11.4	
0-9,999 / 20,000-29,999	73	18	13.0	7.2	3.3	4.7	9.8	
30,000-39,999 / 0-9,999	14	73	16.4	13.0	1.6	1.9	2.3	
10,000-19,999 / 20,000-29,999	72	18	12.6	7.2	3.1	1.8	2.2	++
30,000-39,999 / 10,000-19,999	14	72	16.4	12.6	1.7	1.9	2.4	
20,000-29,999 / 30,000-39,999	14	18	16.4	7.2	5.2	2.3	3.3	++

TABLE B.M.3.6 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	Vı	V2	S1	S2	F	F (5%)	F(1%)	
10,000-19,999 / 0-9,999	4	5	6.4	4.2	2.3	5.2	11.4	
20,000-29,999 / 0-9,999	13	5	21.4	4.2	25.7	4.7	9.8	++
30,000-39,999 / 0-9,999	12	5	5.9	4.2	2.0	4.7	9.9	
40,000-49,999 / 0-9,999	3	5	7.5	4.2	3.1	5.4	12.1	
50,000-59,999 / 0-9,999	2	5	4.7	4.2	1.3	5.8	13.3	
0-9,999 / 60,000-69,999	5	3	4.2	3.1	1.9	9.0	28.2	
70,000-79,999 / 0-9,999	6	5	13.0	4.2	9.5	5.0	10.7	+
0-9,999 / 80,000-	5	3	4.2	3.9	1.2	9.0	28.2	
20,000-29,999 / 10,000-19,999	13	4	21.4	6.4	11.2	5.9	14.3	+
10,000-19,999 / 30,000-39,999	4	12	6.4	5.9	1.2	3.3	5.4	
40,000-49,999 / 10,000-19,999	3	4	7.5	6.4	1.4	6.6	16.7	
10,000-19,999 / 10,000-19,999	4	2	6.4	4.7	1.8	19.2	99.2	
10,000-19,999 / 50,000-59,999	4	3	6.4	3.1	4.3	9.1	28.7	
70,000-79,999 / 10,000-19,999	6	4	13.0	6.4	4.1	6.2	15.2	ļ
10,000-19,999 / 80,000-	4	3	6.4	3.9	2.7	9.1	28.7	
20,000-29,999 / 30,000-39,999	13	12	21.4	5.9	3.1	2.7	4.1	
20,000-29,999 / 40,000-49,999	13	3	21.4	7.5	8.2	8.7	27.0	
20,000-29,999 / 50,000-59,999	13	2	21.4	4.7	20.4	19.4	99.4	+
20,000-29,999 / 60,000-69,999	13	3	21.4	3.1	48.4	8.7	27.0	++
20,000-29,999 / 70,000-79,999	13	6	21.4	13.0	2.7	4.0	7.7	
20,000-29,999 / 80,000-	13	3	21.4	3.9	30.6	8.7	27.0	++
40,000-49,999 / 30,000-39,999	3	12	7.5	5.9	1.6	3.5	6.0	
30,000-39,999 / 50,000-59,999	12	2	5.9	4.7	1.6	19.4	99.4	
30,000-39,999 / 60,000-69,999	12	3	5.9	3.1	3.7	8.7	27.1	
30,000-39,999 / 70,000-79,999	6	12	13.0	5.9	4.8	3.0	4.8	++
30,000-39,999 / 80,000-	12	3	5.9	3.9	2.3	8.7	27.1	
40,000-49,999 / 50,000-59,999	3	2	7.5	4.7	2.5	19.2	99.2	·
40,000-49,999 / 60,000-69,999	3	3	7.5	3.1	5.9	9.3	29.5	
70,000-79,999 / 40,000-49,999	6	3	13.0	7.5	3.0	8.9	27.9	
40,000-49,999 / 80,000-	3	3	7.5	3.9	3.7	9.3	29.5	
50,000-59,999 / 60,000-69,999	2	3	4.7	3.1	2.4	9.6	30.8	
70,000-79,999 / 50,000-59,999	6	2	13.0	4.7	7.5	19.3	99.3	
50,000-59,999 / 80,000-	2	3	4.7	3.9	1.5	9.6	30.8	
70,000-79,999 / 60,000-69,999	6	3	13.0	3.1	7.8	8.9	27.9	
80,000- / 60,000-69,999	3	3	3.9	3.1	1.6	9.3	39.5	
70,000-79,999 / 80,000-	6	3	13.0	3.9	11.3	8.9	27.9	++

BOW HILL, WA - JUNE 25, 1993

TABLE B.M.3.7 - WEIGHT RANGE ANALYSIS FOR AXLES

Weight	Sample	Percentage Difference (%)		Absolute Difference (x 1000 lbs)		
Range	Size	Mean	S.D.	Mean	S.D.	
Less than 10,000 lbs	136	-0.2	23.4	-0.1	1.3	
10,000 - 19,999 lbs	178	-3.9	12.4	-0.5	1.7	
20,000 - 29,999 lbs	34	-0.9	8.0	-0.3	1.9	
30,000 - 39,999 lbs	52	-0.4	9.1	-0.1	3.1	
TOTAL	400	-1.9	16.5	-0.3	1.8	

Mean absolute difference below 10,000 lbs is -100 lbs with a standard deviation of 1,300 lbs. Mean percentage difference above 10,000 lbs is -2.8% with a standard deviation of 11.4%.

TABLE B.M.3.8 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage Difference (%)		$\frac{\sum (PD)^2}{N}$	∑ (PD²)
Range	Size	Sum	Mean	•	
Less than 10,000 lbs	136	-20.7	-0.2	3.1	73665.8
10,000 - 19,999 lbs	178	-700.5	-3.9	2756.6	30147.3
20,000 - 29,999 lbs	34	-29.4	-0.9	25.4	2144.5
30,000 - 39,999 lbs	52	-19.3	-0.4	7.2	4229.1
TOTALS	400	-769.8	-1.9	2792.3	110186.7

$$K = No.$$
 of classes = 4

Estimate of population variance based entirely on scatter between the group means: $S_b^2 = 436.9$ Estimate of population variance based entirely on scatter among scores within the groups:

$$S_w^2 = 271.2$$

$$\frac{S_b^2}{S_w^2} = \frac{436.9}{271.2} = 1.61$$

F value at 5% significance level = 2.60. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.M.3.9 - WEIGHT RANGE ANALYSIS FOR TRUCKS

Weight	Sample	Percentage Difference		Absolute Difference (x 1000 lbs)		
Range	Size	Mean	Mean S.D.		S.D.	
Less than 20,000 lbs	10	11.0	47.2	1.1	5.3	
20,000 - 29,999 lbs	11	0.7	8.6	0.1	2.3	
30,000 - 39,999 lbs	58	-4.0	9.0	-1.4	3.0	
40,000 - 49,999 lbs	8	-5.3	3.0	-2.3	1.2	
50,000 - 59,999 lbs	2	6.7	2.2	3.8	1.1	
60,000 - 69,999 lbs	11	-0.9	3.9	-0.5	2.6	
70,000 - 79,999 lbs	20	0.7	7.3	0.5	5.6	
More than 80,000 lbs	8	-3.9	6.4	-3.7	5.6	
TOTAL	128	-1.3	15.2	-0.8	3.9	

TABLE B.M.3.10 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage Difference (%)		\(\sum_{V} \) (PD) 2	∑ (PD²)
Range	Size	Sum	Mean		
Less than 20,000 lbs	10	110.2	11.0	1215.4	21231.3
20,000 - 29,999 lbs	11	7.9	0.7	5.7	741.7
30,000 - 39,999 lbs	58	-233.0	-4.0	935.7	5520.7
40,000 - 49,999 lbs	8	-42.2	-5.3	222.1	286.7
50,000 - 59,999 lbs	2	13.4	6.7	89.3	94.3
60,000 - 69,999 lbs	11	-9.4	-0.9	8.0	162.1
70,000 - 79,999 lbs	20	14.8	0.7	11.0	1014.0
More than 80,000 lbs	8	-31.5	-3.9	124.4	415.3
TOTAL	128	-169.7	-1.3	2611.7	29466.1

$$K = No.$$
 of classes = 8

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 341.0$$

Estimate of population variance based entirely on scatter among scores within the groups:

$$S_w^2 = 223.8$$

$$\frac{S_b^2}{S_{...}^2} = \frac{341.0}{223.8} = 1.52$$

F value at 5% significance level = 2.09. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.M.3.11 - COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F (5%)	F (1%)	
						(370)	(176)	
0-9,999 / 10,000-19,999	135	177	23.3	13.0	3.2	1.0	1.0	++
0-9,999 / 20,000-29,999	135	33	23.3	7.9	8.6	1.6	2.0	++
30,000-39,999 / 0-9,999	135	51	23.3	9.0	6.7	1.5	1.7	++
10,000-19,999 / 20,000-29,999	177	33	13.0	7.9	2.7	1.6	2.0	++
10,000-19,999 / 30,000-39,999	177	51	13.0	9.0	2.1	1.5	1.7	++
20,000-29,999 / 30,000-39,999	51	33	9.0	7.9	1.3	1.7	2.2	

TABLE B.M.3.12 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	\$2	F	F	F	
						(5%)	(1%)	
0-19,999 / 20,000-29,999	9	10	46.1	8.2	31.5	3.0	4.9	++
0-19,999 / 30,000-39,999	9	57	46.1	9.8	22.3	2.1	2.8	++
0-19,999 / 40,000-49,999	9	7	46.1	6.0	59.2	3.7	6.7	++
0-19,999 / 50,000-59,999	9	1	46.1	6.9	45.0	241.0	6023	
0-19,999 / 60,000-69,999	9	10	46.1	3.8	144.0	3.0	4.9	++
0-19,999 / 70,000-79,999	9	19	46.1	7.1	41.9	2.4	3.5	++
0-19,999 / 80,000-	9	7	46.1	7.2	40.8	3.7	6.7	++
20,000-29,999 / 30,000-39,999	5 7	10	9.8	8.2	1.4	2.6	4.1	
20,000-29,999 / 40,000-49,999	10	7	8.2	6.0	1.9	3.6	6.6	
20,000-29,999 / 50,000-59,999	10	1	8.2	6.9	1.4	242.0	6056	
20,000-29,999 / 60,000-69,999	10	10	8.2	3.8	4.6	3.0	4.9	+
20,000-29,999 / 70,000-79,999	10	19	8.2	7.1	1.3	2.4	3.4	
20,000-29,999 / 80,000-	10	7	8.2	7.2	1.3	3.6	6.6	
30,000-39,999 / 40,000-49,999	57	7	9.8	6.0	2.7	3.3	5.9	
30,000-39,999 / 50,000-59,999	57	1	9.8	6.9	2.0	252.0	6300	
30,000-39,999 / 60,000-69,999	57	10	9.8	3.8	6.5	2.6	4.1	++
30,000-39,999 / 70,000-79,999	57	19	9.8	7.1	1.9	2.0	2.7	
30,000-39,999 / 80,000-	57	7	9.8	7.2	1.8	3.3	5.9	
50,000-59,999 / 40,000-49,999	1	7	6.9	6.0	1.3	5.6	12.2	
40,000-49,999 / 60,000-69,999	7	10	6.0	3.8	2.4	3.1	5.2	
70,000-79,999 / 40,000-49,999	19	7	7.1	6.0	1.4	3.5	6.2	
80,000- / 40,000-49,999	7	7	7.2	6.0	1.4	3.8	7.0	
50,000-59,999 / 60,000-69,999	1	10	6.9	3.8	3.2	5.0	10.0	
70,000-79,999 / 50,000-59,999	19	1	7.1	6.9	1.1	248.0	6190	
80,000- / 50,000-59,999	7	1	7.2	6.9	1.1	237.0	5928	
70,000-79,999 / 60,000-69,999	19	10	7.1	3.8	3.4	2.8	4.5	+
80,000- / 60,000-69,999	7	10	7.2	3.8	3.5	3.1	5.2	+
80,000- / 80,000-79,999	7	19	7.2	7.1	1.0	2.5	3.8	

SANTA NELLA, CA - MAY 7, 1993 - HIGH SPEED WIM

TABLE B.O.3.1 - WEIGHT RANGE ANALYSIS FOR AXLES

Weight	Sample	Percentage Difference (%)		Absolute Difference (x 1000 lbs)	
Range	Size	Mean	S.D.	Mean	S.D.
Less than 10,000 lbs	11	3.1	7.2	0.1	0.5
10,000 - 19,999 lbs	27	0.9	10.9	0.1	1.6
20,000 - 29,999 lbs	7	2.3	2.7	0.6	0.7
30,000 - 39,999 lbs	7	2.4	4.6	0.8	1.5
TOTAL	52	1.7	8.7	0.3	1.3

Mean absolute difference below 10,000 lbs is 100 lbs with a standard deviation of 500 lbs. Mean percentage difference above 10,000 lbs is 1.4% with a standard deviation of 9.0%.

TABLE B.O.3.2 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage Difference (%) $\sum_{N} \frac{(PD)^2}{N}$		$\sum (PD^2)$	
Range	Size	Sum	Mean	N	
Less than 10,000 lbs	11	34.0	3.1	105.3	623.1
10,000 - 19,999 lbs	27	23.5	0.9	20.5	3108.9
20,000 - 29,999 lbs	7	16.0	2.3	36.4	78.8
30,000 - 39,999 lbs	7	17.1	2.4	41.8	166.2
TOTALS	52	90.6	1.7	203.9	3976.9

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 15.4$$

$$S_w^2 = 78.6$$

$$\frac{S_b^2}{S_w^2} = \frac{15.4}{78.6} = 0.20$$

F value at 5% significance level = 2.81. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.O.3.3 WEIGHT RANGE ANALYSIS FOR TRUCKS

Weight	Sample	Percentage Difference (%)		Absolute Difference (x 1000 lbs)		
Range	Size	Mean	S.D.	Mean	S.D.	
0 - 39,999 lbs	4	4.3	3.8	1.4	1.2	
40,000 - 59,999 lbs	2	-6.5	6.8	-2.8	2.6	
60,000 - 69,999 lbs	5	2.3	2.3	1.5	1.4	
70,000 - 79,999 lbs	4	2.2	2.7	1.7	2.2	
TOTAL	15	1.7 4.6		0.9	2.1	

TABLE B.O.3.4 - F-TEST DATA FOR TRUCK WEIGHTS

Weight	Sample	Percentage Difference (%)		∑ (,PD) ² N	∑ (PD²)
Range	Size	Sum	Mean		
Less than 60,000 lbs	6	65.7	11.0	720.5	2109.3
60,000 - 69,999 lbs	3	2.7	0.9	2.5	369.8
70,000 - 79,999 lbs	21	201.5	9.6	1932.8	4216.6
More than 80,000 lbs	3	1.1	0.4	0.4	169.2
TOTAL	33	271.0	8.2	2656.1	6864.9

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 55.3$$

$$S_w^2 = 12.1$$

$$\frac{S_b^2}{S_w^2} = \frac{55.3}{12.1} = 4.58$$

F value at 5% significance level = 3.59. Therefore at the 5% level reject the null hypothesis and conclude that there is a significant difference between the sample means.

TABLE B.O.3.5 - COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	\$2	F	F	F	
						(5%)	(1%)	
10,000-19,999 / 0-19,999	26	10	10.7	7.5	2.0	2.7	4.3	
0-9,999 / 20,000-29,999	10	6	7.5	3.4	5.1	4.1	7.9	+
0-9,999 / 30,000-39,999	10	6	7.5	4.9	2.4	4.1	7.9	
10,000-19,999 / 20,000-29,999	26	6	10.7	3.4	10.3	3.8	7.3	++
10,000-19,999 / 30,000-39,999	26	6	10.7	4.9	4.9	3.8	7.3	+
30,000-39,999 / 20,000-29,999	6	6	4.9	3.4	2.1	4.3	8.5	

TABLE B.O.3.6 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
40,000-59,999 / 0-39,999	1	3	8.1	5.4	2.3	10.1	34.1	
0-39,999 / 60,000-69,999	3	4	5.4	3.1	3.0	6.6	16.7	
0-39,000 / 80,000-	3	3	5.4	3.2	2.8	9.3	29.5	
40,000-59,999 / 60,000-69,999	1	4	8.1	3.1	6.7	7.7	21.2	
40,000-59,999 / 70,000-79,999	1	3	8.1	3.2	6.4	10.1	34.1	
70,000-79,999 / 80,000-	3	4	3.2	3.1	1.1	6.6	16.7	

SANTA NELLA, CA - MAY 7, 1993 - LOW SPEED WIM

TABLE B.O.3.7 - WEIGHT RANGE ANALYSIS FOR AXLES

Weight	Sample		e Difference	Absolute Difference (x 1000 lbs)	
Range	Size	Mean	S.D.	Mean	S.D.
Less than 10,000 lbs	11	-1.9	3.8	-0.2	0.2
10,000 - 19,999 lbs	11	-4.2	2.4	-0.5	0.3
20,000 - 29,999 lbs	2	-5.3	0.9	-1.4	0.1
30,000 - 39,999 lbs	6	-3.8	1.1	-1.2	0.4
TOTAL	30	-3.4	3.0	-0.6	0.5

Mean absolute difference below 10,000 lbs is -200 lbs with a standard deviation of 200 lbs. Mean percentage difference above 10,000 lbs is -4.2% with a standard deviation of 2.0%.

TABLE B.O.3.8 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage Difference (%)		\(\sum_{\text{NY}} \left(PD \right)^2 \)	∑ (<i>PD</i> ²)
Range	Size	Sum	Mean	N	
Less than 10,000 lbs	11	-20.4	-1.9	37.9	184.4
10,000 - 19,999 lbs	11	-46.7	-4.2	198.0	257.3
20,000 - 29,999 lbs	2	-10.6	-5.3	56.6	57.3
30,000 - 39,999 lbs	6	-22.9	-3.8	87.0	93.3
TOTALS	30	-100.6	-3.4	379.5	592.3

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 14.1$$

$$S_w^2 = 8.2$$

$$\frac{S_b^2}{S_w^2} = \frac{14.1}{8.2} = 1.72$$

F value at 5% significance level = 2.98. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.O.3.9 - WEIGHT RANGE ANALYSIS FOR TRUCKS

Weight	Sample	Percentag	ge Difference (%)	Absolute Difference (x 1000 lbs)		
Range	Size	Mean	S.D.	Mean	S.D.	
Less than 20,000 lbs	3	-3.4	0.9	-0.6	0.2	
20,000 - 49,999 lbs	2	0.3	1.8	0.1	0.5	
50,000 - 69,999 lbs	2	-4.4	0.8	-2.8	0.3	
More than 70,000 lbs	3	-2.1	3.2	-1.6	2.4	
TOTAL	10	-2.5 2.4		-1.2	1.6	

TABLE B.O.3.10 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage Difference (%)		$\frac{\sum (PD)^2}{N}$	$\sum \langle PD^2 \rangle$
Range	Size	Sum	Mean		
Less than 20,000 lbs	3	-10.1	-3.4	34.0	35.7
20,000 - 49,999 lbs	2	0.5	0.3	0.1	3.3
50,000 - 69,999 lbs	2	-8.7	-4.4	38.1	38.7
More than 70,000 lbs	3	-6.3	-2.1	13.3	33.3
TOTAL	10	-24.6	-2.5	85.5	111.0

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 8.3$$

$$S_{\rm w}^{2}=4.3$$

$$\underline{S}_{b_{w}^{2}}^{2} = \underline{8.3} = 1.94$$

F value at 5% significance level = 4.76. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.O.3.11 - COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F (5%)	F (1%)	
						(0,0)	(170)	
10,000-19,999 / 0-9,999	10	10	4.8	4.1	1.4	3.0	4.9	
20,000-29,999 /0-9,999	1	10	5.4	4.1	1.7	5.0	10.0	
0-9,999 / 30,000-39,999	10	5	4.1	3.9	1.1	4.7	10.1	
20,000-29,999 / 10,000-19,999	1	10	5.1	4.8	1.1	5.0	10.0	
10,000-19,999 / 30,000-39,999	10	5	4.8	3.9	1.5	4.7	10.1	
20,000-29,999 / 30,000-39,999	1	5	5.4	3.9	1.8	6.6	16.3	

TABLE B.O.3.12 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
0-19,999 /20,000-49,999	2	1	3.5	1.3	7.2	200.0	5000.0	
50,000-69,999 / 0-19,999	1	2	4.4	3.5	1.6	18.5	98.5	
0-19,000 / 70,000-	2	2	3.5	3.3	1.1	19.0	99.0	
50,000-69,999 / 20,000-49,999	1	1	4.4	1.3	11.6	161.0	4052.0	
70,000- / 20,000-49,999	2	1	3.3	1.3	6.7	200.0	5000.0	
60,000-69,999 / 70,000-	1	2	4.4	1.3	1.7	18.5	98.5	

SANTA NELLA, CA - JUNE 29, 1993 - LOW SPEED WIM

TABLE B.O.3.13 -WEIGHT RANGE ANALYSIS FOR AXLES

Weight	Sample	Percentag	ge Difference	Absolute Difference (x 1000 lbs)		
Range	Size	Mean	Mean S.D.		S.D.	
Less than 10,000 lbs	17	1.8	3.0	0.1	0.3	
10,000 - 19,999 lbs	30	1.9	3.0	0.2	0.4	
20,000 - 29,999 lbs	12	2.2	3.1	0.5	0.7	
30,000 - 39,999 lbs	12	1.3	2.4	0.4	0.8	
TOTAL	71	1.8	1.8 2.9		0.5	

Mean absolute difference below 10,000 lbs is 100 lbs with a standard deviation of 300 lbs. Mean percentage difference above 10,000 lbs is 1.8% with a standard deviation of 2.9%.

TABLE B.O.3.14 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage Difference (%)		\(\sum_{N}^{(PD)^{2}} \)	$\sum (PD^2)$
Range	Size	Sum	Mean	A	
Less than 10,000 lbs	17	31.1	1.8	56.9	196.1
10,000 - 19,999 lbs	30	57.8	1.9	111.2	377.0
20,000 - 29,999 lbs	12	27.0	2.2	60.6	163.7
30,000 - 39,999 lbs	12	15.0	1.3	18.8	79.7
TOTALS	71	130.8	1.8	247.5	816.5

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 2.1$$

$$S_w^2 = 8.5$$

$$\frac{S_b^2}{S_w^2} = \frac{2.1}{8.5} = 0.25$$

F value at 5% significance level = 2.73. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.O.3.15 - WEIGHT RANGE ANALYSIS FOR TRUCKS

Weight	Sample	Percentag	ge Difference (%)	Absolute I	Difference
Range	Size	Mean	S.D.	Mean	S.D.
30,000 - 39,999 lbs	5	4.5	1.6	1.6	0.5
40,000 - 49,999 lbs	2	3.6	0.7	1.8	0.4
50,000 - 59,999 lbs	4	2.8	2.1	1.4	1.1
60,000 - 69,999 lbs	2	2.0	2.4	1.3	1.6
More than 70,000 lbs	8	0.7	1.7	0.5	1.2
TOTALS	21	2.4	2.2	1.1	1.1

TABLE B.O.3.16 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage I	Difference (%)	$\frac{\sum (PD)^2}{N}$	∑ (<i>PD</i> ²)
Range	Size	Sum	Mean		
30,000 - 39,999 lbs	5	22.4	4.5	100.0	110.4
40,000 - 49,999 lbs	2	7.1	3.6	25.4	25.9
50,000 - 59,999 lbs	4	11.1	2.8	30.5	43.8
60,000 - 69,999 lbs	2	4.0	2.0	8.1	14.1
More than 70,000 lbs	8	5.9	0.7	4.3	23.6
TOTAL	21	50.5	2.4	168.4	217.7

K = No. of classes = 5

Estimate of population variance based entirely on scatter between the group means:

$$S_b^2 = 11.8$$

Estimate of population variance based entirely on scatter among scores within the groups:

$$S_w^2 = 3.1$$
 $\frac{S_b^2}{S_w^2} = \frac{11.8}{3.1} = 3.82$

F value at 5% significance level = 3.01. Therefore at the 5% level reject the null hypothesis and conclude that there is a significant difference between the sample means.

TABLE B.O.3.17 - COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	\$2	F	F	F	
						(5%)	(1%)	
10,000-9,999 / 0-9,999	29	16	3.6	3.4	1.1	2.2	3.1	
20,000-9,999 / 0-9,999	11	16	3.7	3.4	1.2	2.5	3.6	
0-9,999 / 30,000-39,999	16	11	3.4	2.6	1.7	2.7	4.2	
20,000-29,999 / 10,000-19,999	11	29	3.7	3.6	1.1	2.1	2.9	
10,000-19,999 / 30,000-39,999	29	11	3.6	2.6	1.9	2.6	4.0	
20,000-29,999 / 30,000-39,999	11	11	3.7	2.6	2.0	2.8	4.5	

TABLE B.O.3.18 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	Vı	V2	S1	S2	F	F	F	
						(5%)	(1%)	
30,000-39,000 / 40,000-49,999	4	1	4.7	3.6	1.7	225.0	5625.0	
30,000-39,000 / 50,000-59,999	4	3	4.7	3.3	2.0	9.1	28.7	
30,000-39,000 / 60,000-69,999	4	1	4.7	2.7	3.1	225.0	5625.0	
30,000-39,000 / 70,000-	4	7	4.7	1.8	6.6	4.1	7.9	+
40,000-49,000 / 50,000-59,999	1	3	3.6	3.3	1.2	10.1	34.1	
40,000-49,000 / 60,000-69,999	1	1	3.6	2.7	1.8	161.0	4052.0	
40,000-49,000 / 70,000-	1	7	3.6	1.8	3.9	5.6	12.2	
50,000-59,999 / 60,000-69,999	3	1	3.3	2.7	1.6	216.0	5403.0	
50,000-59,999 / 70,000-	3	7	3.3	1.8	3.3	4.4	8.5	
60,000-69,999 / 70,000-	1	7	2.7	1.8	2.1	5.6	12.2	

SANTA NELLA, CA - JUNE 30, 1993 - LOW SPEED WIM

TABLE B.O.3.19 - WEIGHT RANGE ANALYSIS FOR AXLES

Weight					Difference
Range	Size	Mean	S.D.	Mean	S.D.
Less than 10,000 lbs	13	2.3	2.3 3.9		0.3
10,000 - 19,999 lbs	51	1.4	2.8	0.2	0.4
20,000 - 29,999 lbs	7	0.7	2.3	0.2	0.6
30,000 - 39,999 lbs	21	1.4	2.2	0.4	0.7
TOTAL	92	1.5	2.8	0.3	0.5

Mean absolute difference below 10,000 lbs is 200 lbs with a standard deviation of 300 lbs. Mean percentage difference above 10,000 lbs is 1.4% with a standard deviation of 2.6%.

TABLE B.O.3.20 - F-TEST DATA FOR AXLE WEIGHTS

Weight	Sample	Percentage D	ifference (%)	∑ (PD) ² N	∑ (PD²)
Range	Size	Sum	Mean		
Less than 10,000 lbs	13	30.4	2.3	70.9	252.4
10,000 - 19,999 lbs	51	73.8	1.4	106.9	496.1
20,000 - 29,999 lbs	7	5.0	0.7	3.6	35.6
30,000 - 39,999 lbs	21	28.5	1.4	38.8	136.1
TOTALS	92	137.8	1.5	220.2	920.2

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means: $S_b^2 = 4.6$ Estimate of population variance based entirely on scatter among scores within the groups:

$$S_w^2 = 8.0$$
 $\frac{S_b^2}{S_w^2} = \frac{4.6}{8.0} = 0.58$

F value at 5% significance level = 2.71. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.O.3.21 - WEIGHT RANGE ANALYSIS FOR TRUCKS

Weight	Sample	Percentag	ge Difference	Absolute Difference (x 1000 lbs)		
Range	Size	Mean	S.D.	Mean	S.D.	
0 - 39,999 lbs	3	1.8	1.0	0.5	0.4	
60,000 - 69,999 lbs	2	2.1	3.2	1.4	2.2	
70,000 - 79,999 lbs	16	1.8	1.8	1.4	1.4	
More than 80,000 lbs	4	0.3	0.9	0.3	0.7	
TOTALS	25	1.6	1.7	1.1	1.3	

TABLE B.O.3.22 - F-TEST DATA FOR TRUCK WEIGHTS

Weight	Sample	Percentage I	Difference (%)	$\frac{\sum (PD)^2}{N}$	$\sum (PD^2)$
Range	Size	Sum	Mean		
0 - 39,999 lbs	3	5.3	1.8	9.4	11.3
60,000 - 69,999 lbs	2	4.2	2.1	8.8	19.0
70,000 - 79,999 lbs	16	29.0	1.8	52.7	99.5
More than 80,000 lbs	4	1.4	0.3	0.5	2.7
TOTAL	25	39.9	1.6	71.4	132.5

K = No. of classes = 4

Estimate of population variance based entirely on scatter between the group means:

$$S_{\rm h}^2 = 2.5$$

$$S_w^2 = 2.9$$
 $S_b^2 = \frac{2.5}{2.9} = 0.87$

F value at 5% significance level = 2.84. Therefore at the 5% level reject the null hypothesis and conclude that there is no significant difference between the sample means.

TABLE B.O.3.23 - COMPARISON OF INDIVIDUAL AXLE WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
0-9,999 / 10,000-19,999	12	50	4.4	3.1	2.0	2.0	2.6	
0-9,999 / 20,000-29,999	12	6	4.4	2.3	3.8	4.0	7.7	
0-9,999 / 30,000-39,999	12	21	4.4	2.6	3.0	2.3	3.2	+
10,000-19,999 / 20,000-29,999	50	6	3.1	2.3	1.9	3.8	7.1	
10,000-19,999 / 30,000-39,999	50	21	3.1	2.6	1.5	1.9	2.6	
30,000-39,999 / 20,000-29,999	2 0	6	2.6	2.3	1.3	3.9	7.4	

TABLE B.O.3.24 - COMPARISON OF INDIVIDUAL TRUCK WEIGHT RANGES

Weight Ranges (lbs)	V1	V2	S1	S2	F	F	F	
						(5%)	(1%)	
60,000-69,999 / 0-39,999	1	2	3.1	1.9	2.6	18.5	98.5	
70,000-79,999 / 0-39,999	15	2	2.5	1.9	1.7	19.4	99.4	
0-39,000 / 80,000-	2	3	1.9	0.8	5.4	9.6	30.8	
60,000-69,999 / 70,000-79,999	1	15	3.1	2.5	1.5	4.5	8.7	
60,000-69,999 / 80,000-	1	3	3.1	0.8	14.2	10.1	34.1	+
70,000-79,999 / 80,000-	15	3	2.5	0.8	9.2	8.7	26.9	<u>+</u>

WEIGHT SCREENING ANALYSIS

This section of Annex B presents graphs relating to the weight screening analysis that has been undertaken. For each site these graphs illustrate the efficiency of the weight screening process given the observed accuracy of the WIM's dynamic weight measurements and the distribution of vehicle and axle weights.

For each on-site evaluation sixteen graphs are shown. These consist of four graphs for each of the weight screening analyses for the following weight categories:

- * gross vehicle weight;
- * front axle weight;
- * single axle weights, which do not include the front axles of vehicles or axles contained with tandem axle combinations; and
- * tandem axles weights.

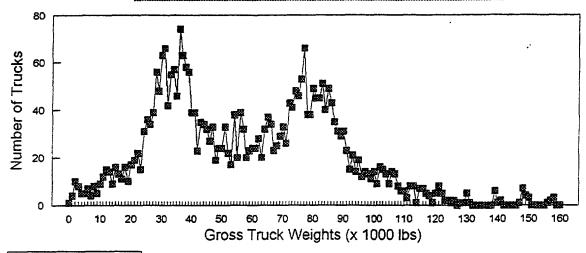
The four graphs presented for each set of weight screening analysis are as follows:

Weight distribution for gross vehicle/single axle/tandem axle weights. This graph shows a weight distribution for the particular class of weight being examined, such as the gross vehicle weights. The weight distribution have been generated using WIM weight data recorded on the day of the on-site evaluation.

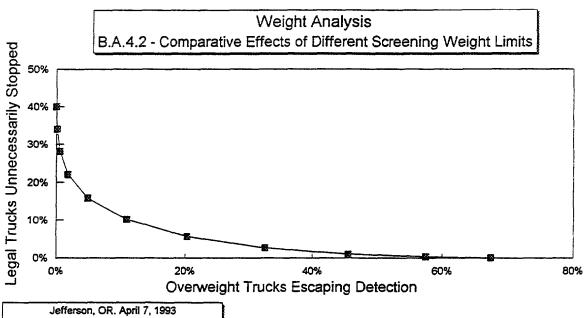
From the analysis of static and dynamic weights, it can be seen that some of the WIM systems are not in calibration. To make an allowance forthe discrepancies between static and dynamic weights, the WIM weight data have been adjusted by the mean percentage difference found between the static and dynamic weights. The adjustments performed utilized the relevant mean percentage difference for either vehicle weights or axle weights. The resulting distribution enables the calculation

of the total proportion of overweight vehicles and the proportion of vehicles at any weight.

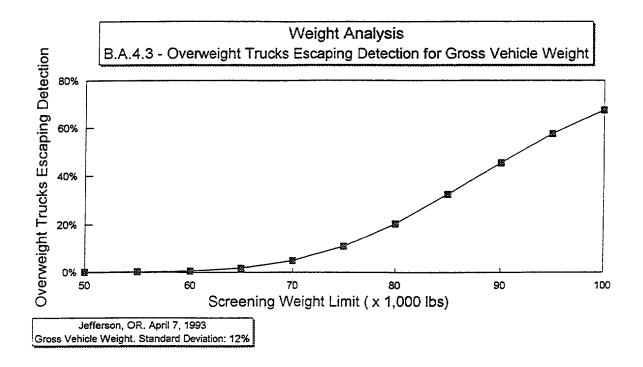
Comparative effects of different screening: weight limits. This graph shows the proportion of legally laden vehicles that are unnecessarily stopped plotted against the proportion of overweight vehicles that escape detection by the WIM system for particular screening weight limits.

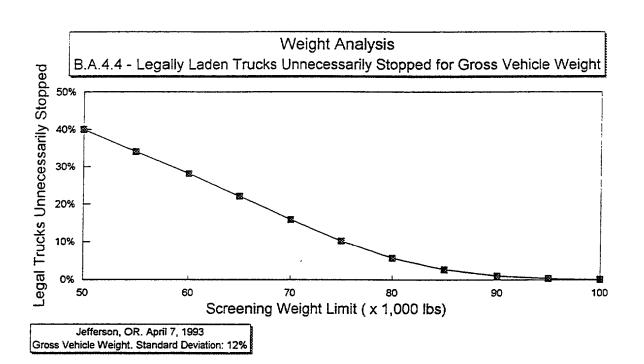

The points plotted on this graph relate the proportions found at specific screening weight limits. This graph shows the relation between these two proportions of vehicles as the screening weight limit is adjusted. Under an ideal scenario with an accurate WIM system the screening weight limit would be set to the legal weight limit and only overweight vehicles would be directed for static weighing. However, given that the WIM system has some measurement variations the screening weight limit requires adjustment to enable a practical screening procedure to be undertaken.

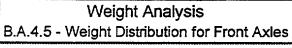
- Overweight trucks escaping detection for gross vehicle weight. etc. This graph presents the proportion of overweight trucks that escape detection by the WIM system. Due to the inaccuracies within weight measurements by the WIM system a proportion of vehicles that have gross vehicle weights or axle weights that are over the legal weight limit will escape detection. The screening weight limit can be adjusted on the WIM system. It can be seen that a lower screening weight limit reduces the probability that an overweight vehicle will escape detection, therefore reducing the proportion of overweight vehicles that escape detection.
- Legally laden trucks unnecessarily stopped for gross vehicle weight, etc. This graph shows the proportion of legally laden trucks that are unnecessarily stopped and directed for static weighing. Due to the inaccuracies within weight measurements by the WIM system a proportion of vehicles that have gross vehicle

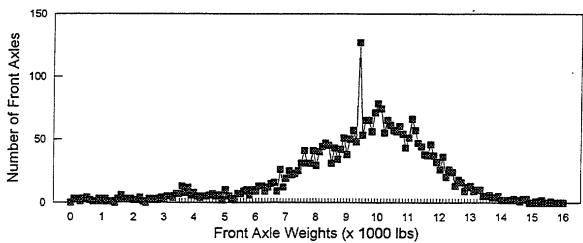

weights or axle weights under the legal weight limit will be unnecessarily directed for static weighing. It can be seen that a lower screening weight limit increases the probability that a legally laden vehicle will be unnecessarily stopped, increasing the number of delayed vehicles.

The relationship between these two vehicle proportions and the screening weight limit results in a conflict. A screening weight limit set to a low level will enable few overweight vehicles to escape detection, however it will also identify a large proportion of legally laden vehicles as being overweight by the WIM's measurement. This reduces the efficiency of dynamic weight screening. The operating authority has to decide a pragmatic policy that will enable efficient weight screening with a suitable enforcement level without the need to statically weigh large numbers of vehicles.

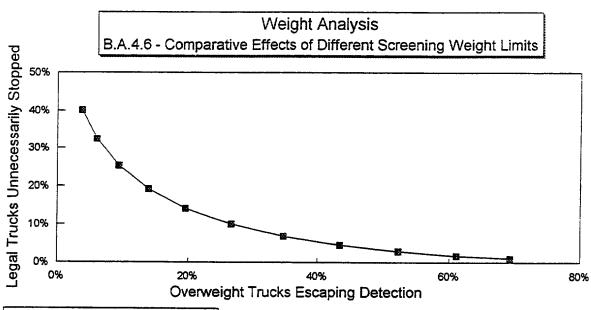


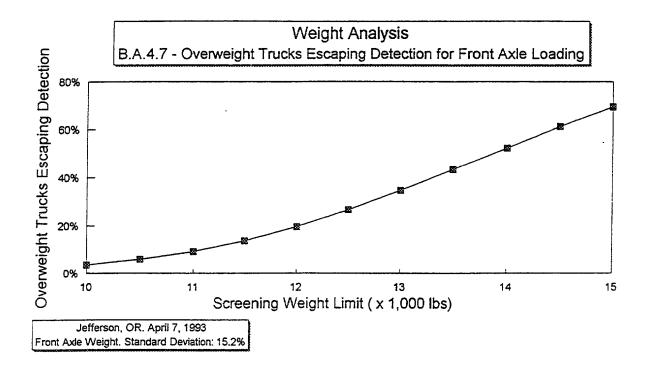


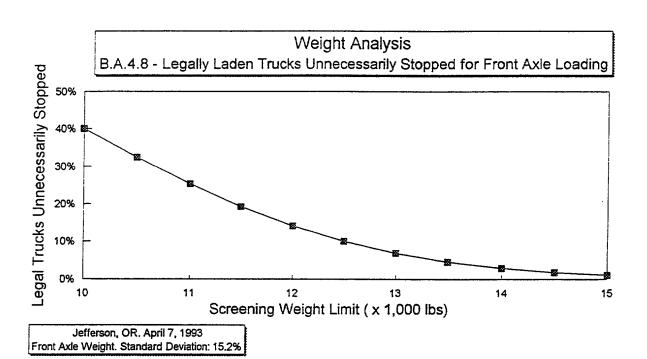

Jefferson, OR. April 7, 1993 Sample Size - 3199

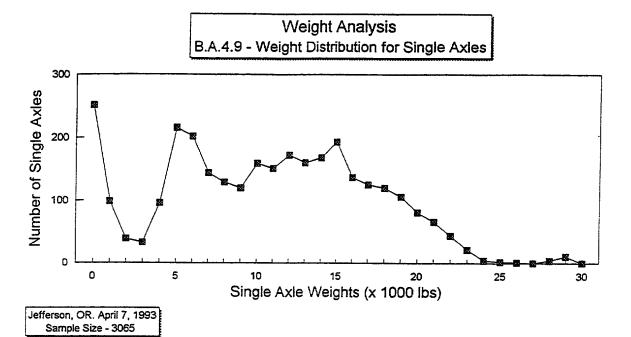


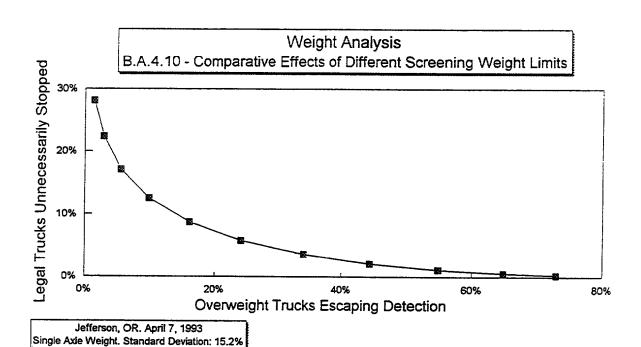
Jefferson, OR. April 7, 1993 Gross Vehicle Weight. Standard Deviation: 12%





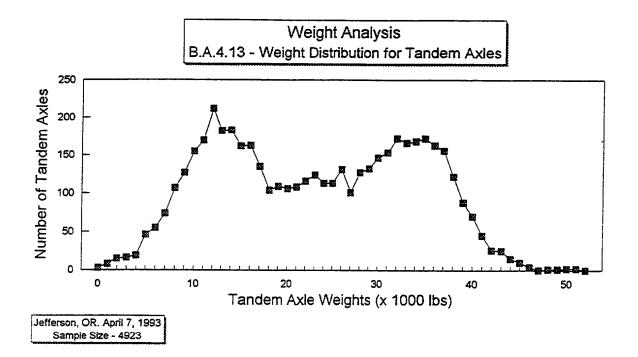


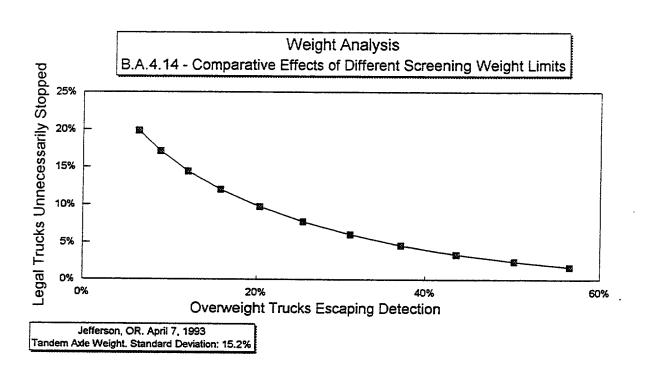

Jefferson, OR. April 7, 1993 Sample Size - 3074

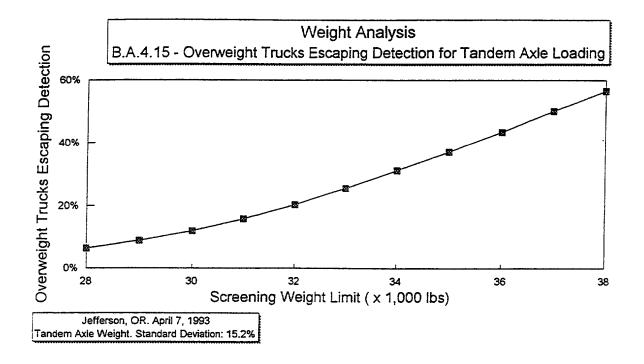


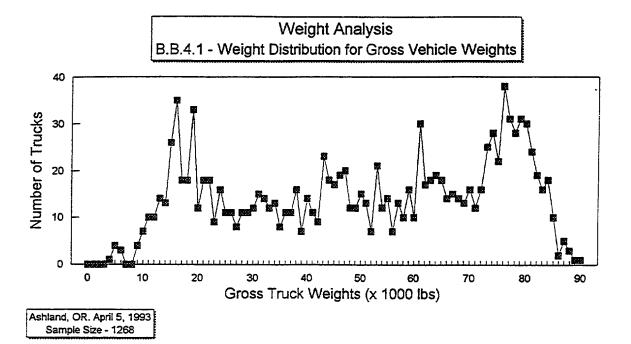

Jefferson, OR. April 7, 1993 Front Axle Weight. Standard Deviation: 15.2%

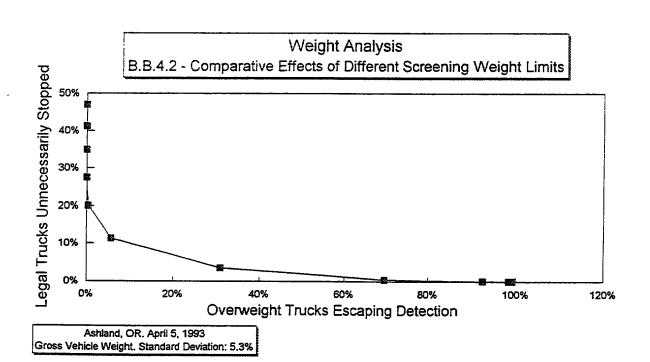


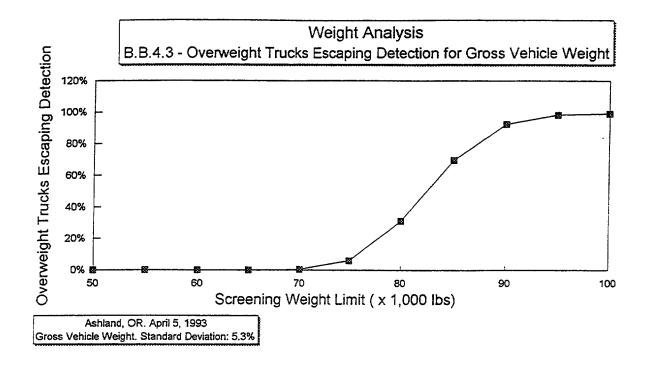


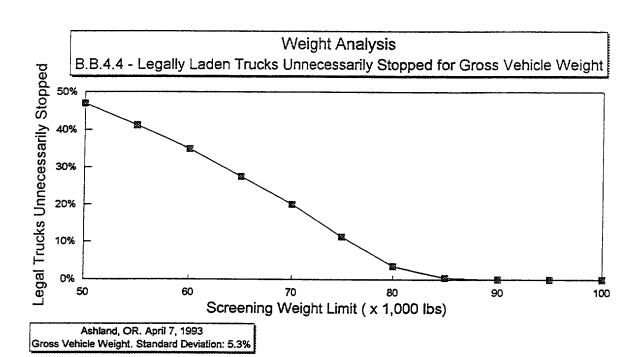


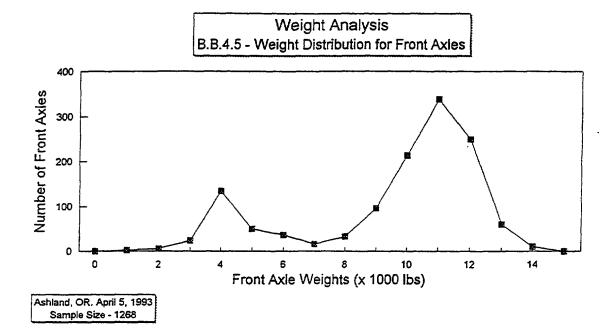


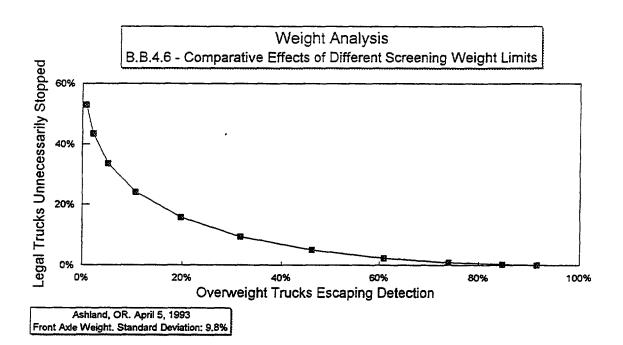


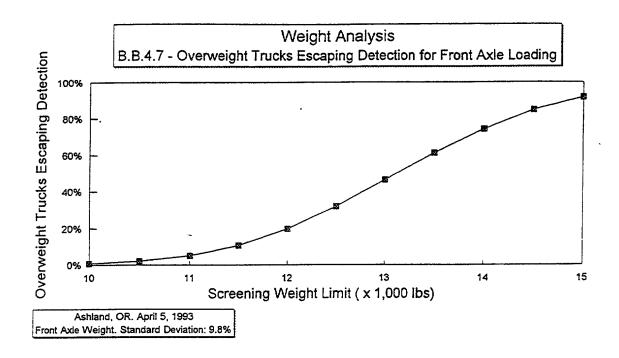


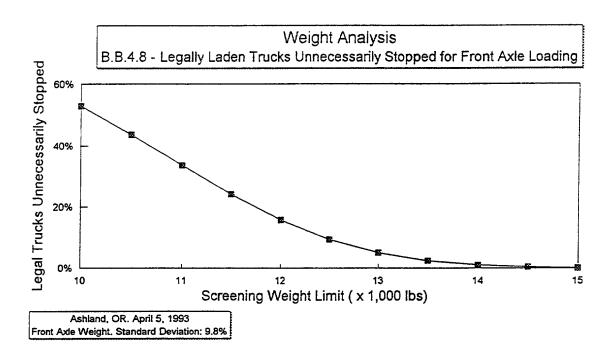


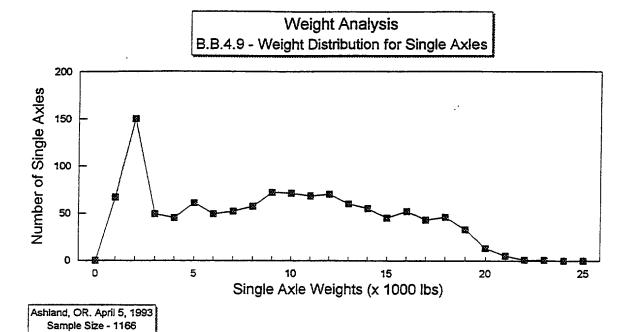


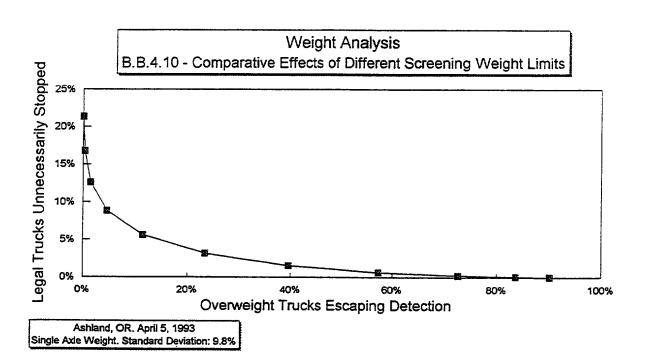


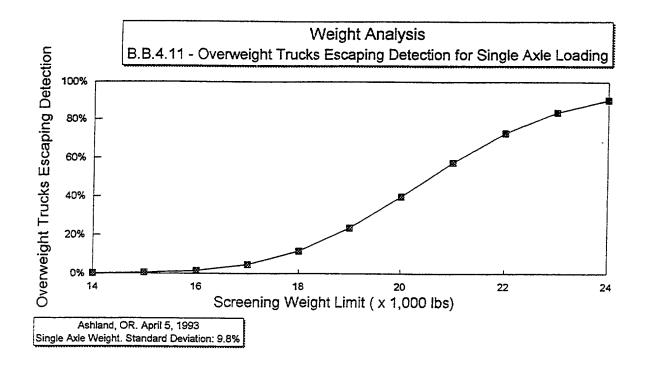


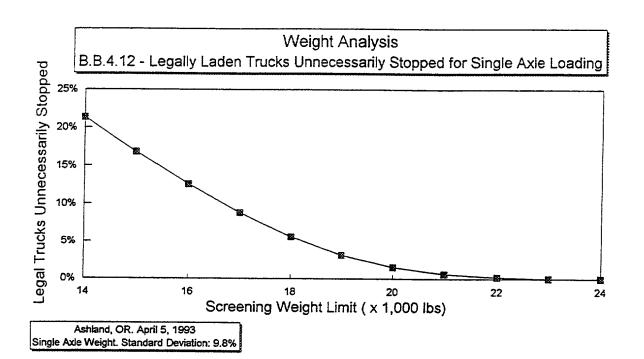


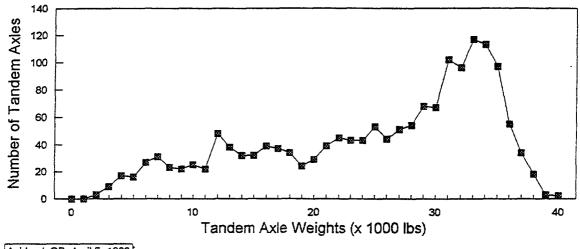


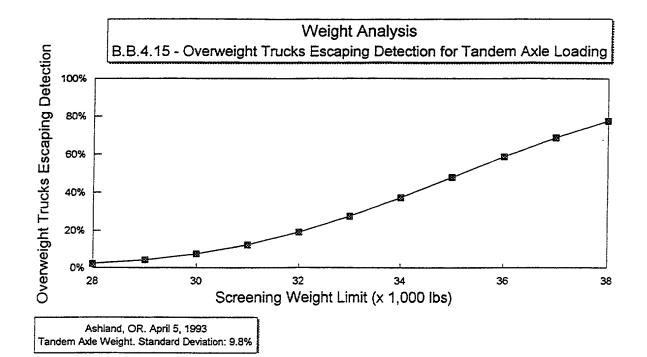


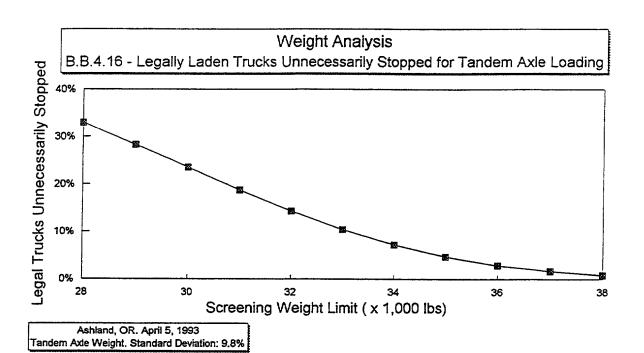


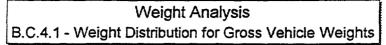


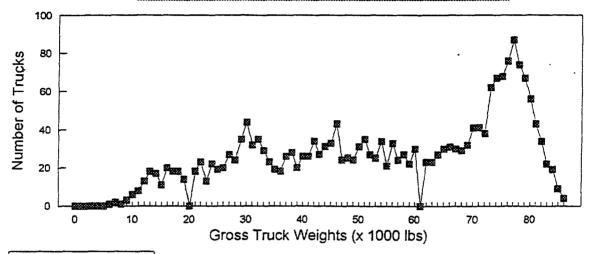




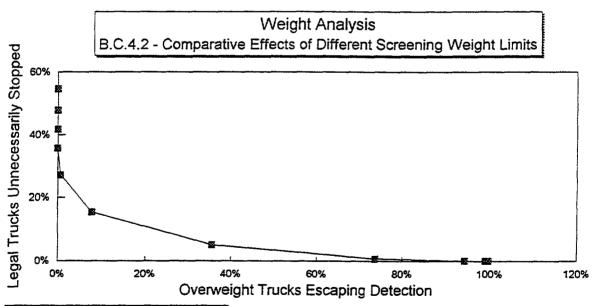

Weight Analysis
B.B.4.13 - Weight Distribution for Tandem Axles

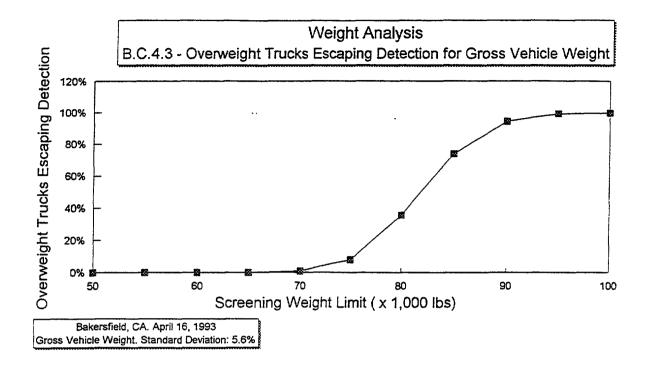


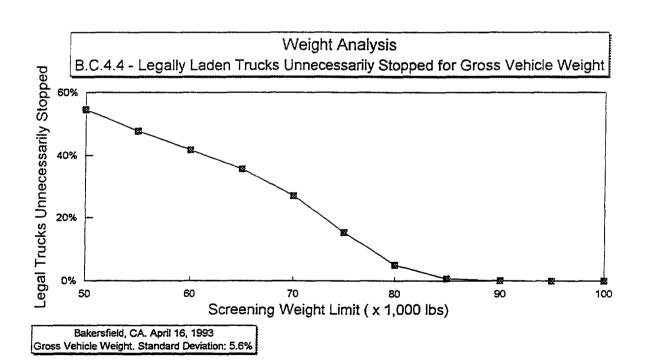

Ashland, OR. April 5, 1993 Sample Size - 1652

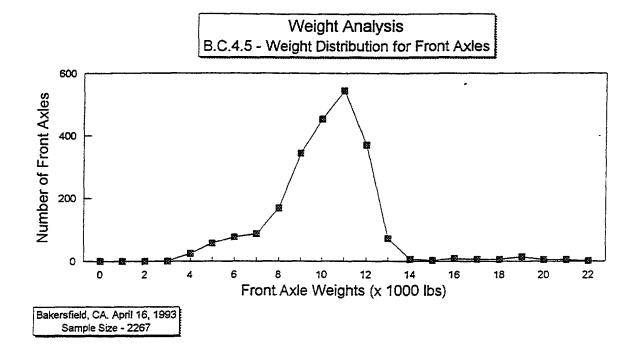


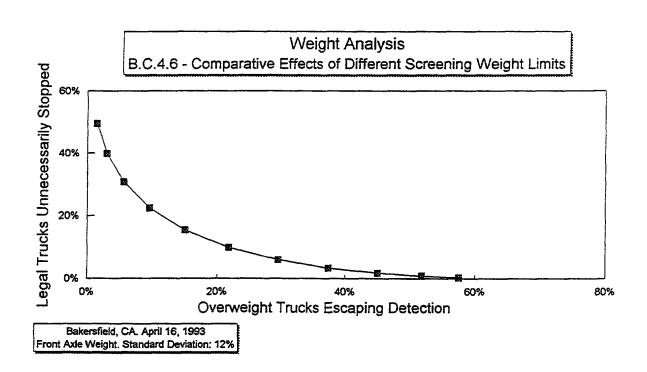
Ashland, OR. April 5, 1993 Tandem Axle Weight. Standard Deviation: 9.8%

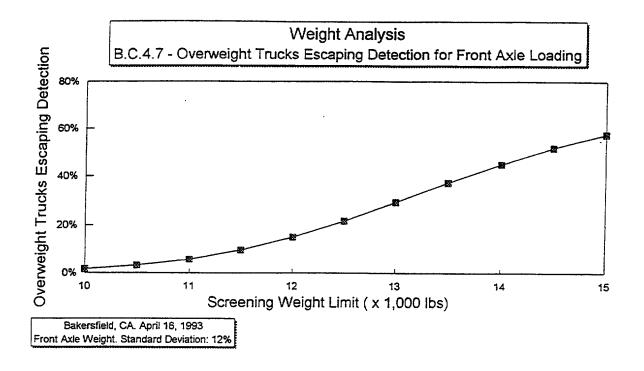


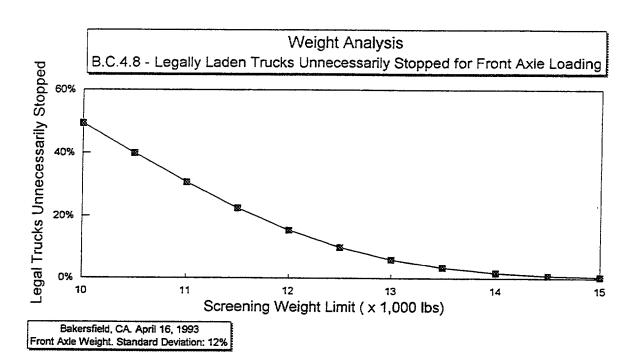


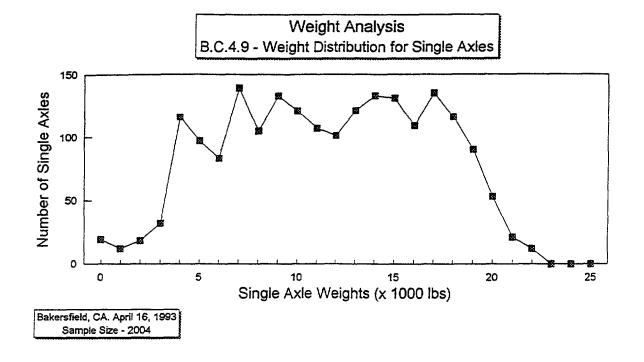


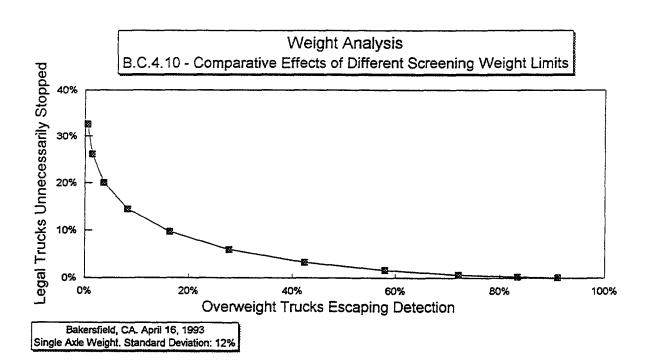

Bakersfield, CA. April 16, 1993 Sample Size - 2266

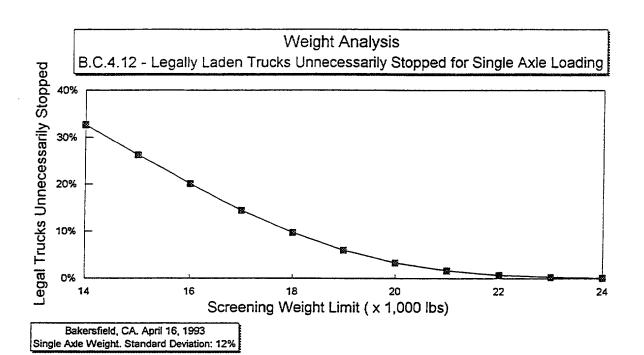


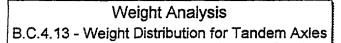

Bakersfield, CA. April 16, 1993 Gross Vehicle Weight. Standard Deviation: 5.6%

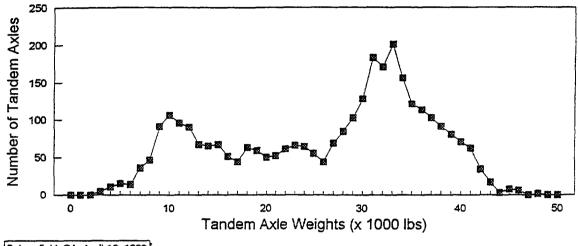


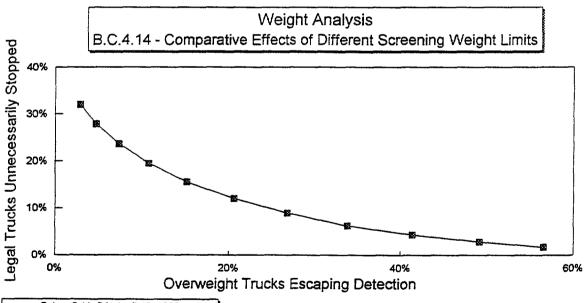


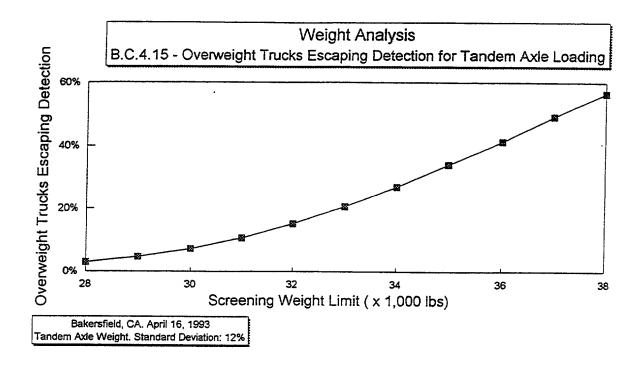


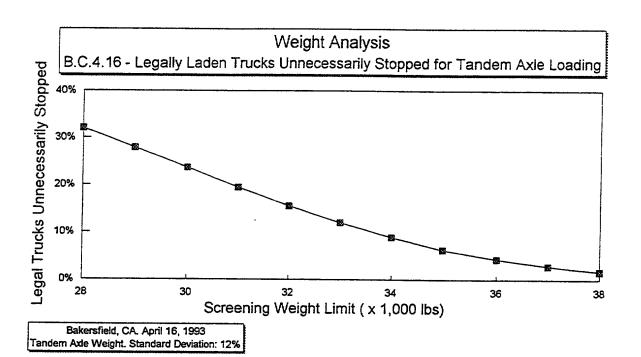


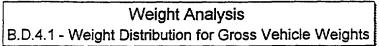


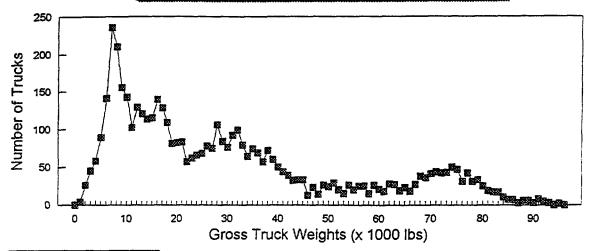




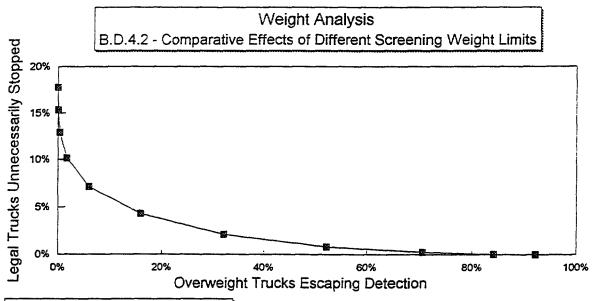


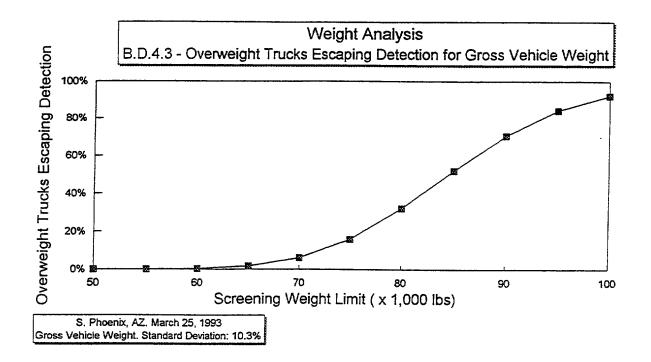


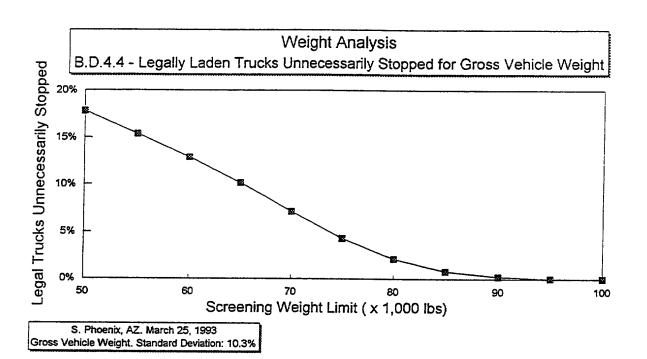

Bakersfield, CA. April 16, 1993 Sample Size - 3122

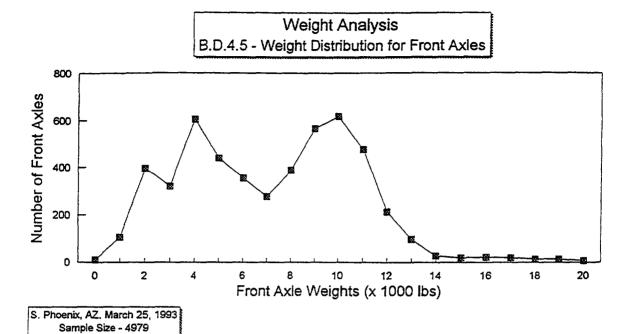


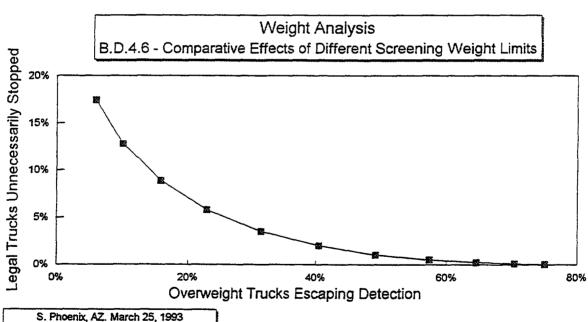
Bakersfield, CA. April 16, 1993 Tandem Axie Weight. Standard Deviation: 12%

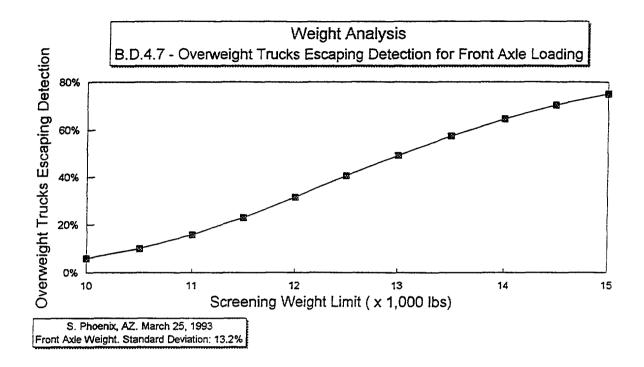


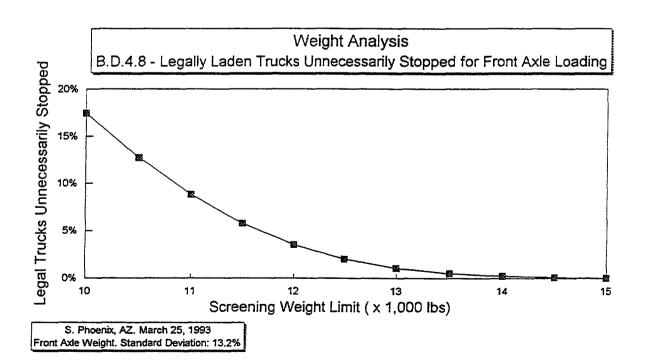


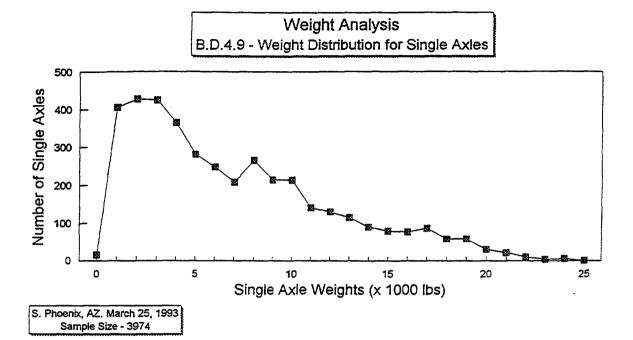


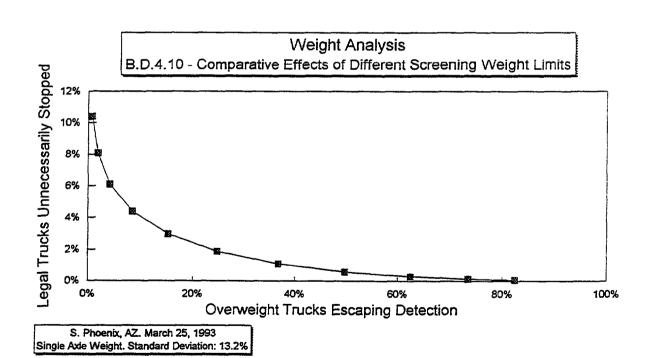

S. Phoenix, AZ. March 25, 1993 Sample Size - 4979

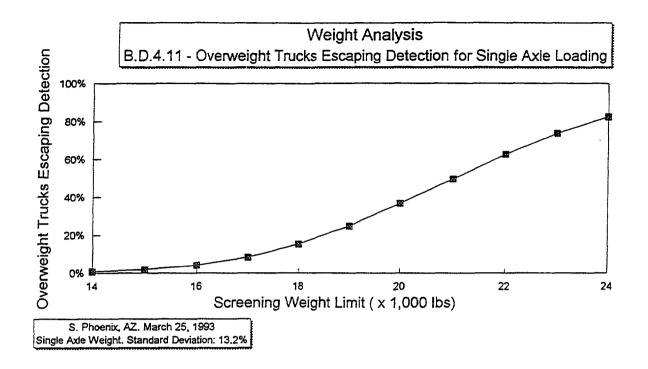


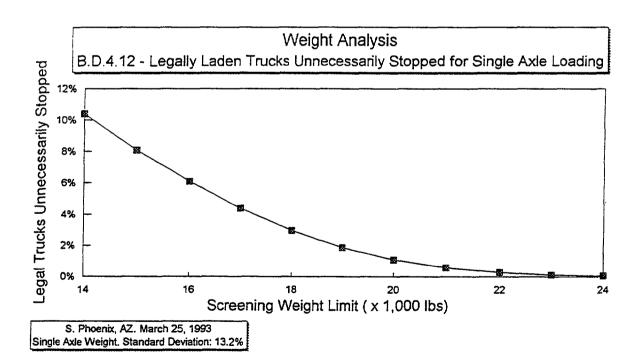

S. Phoenix, AZ. March 25, 1993 Gross Vehicle Weight. Standard Deviation: 10.3%

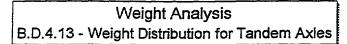


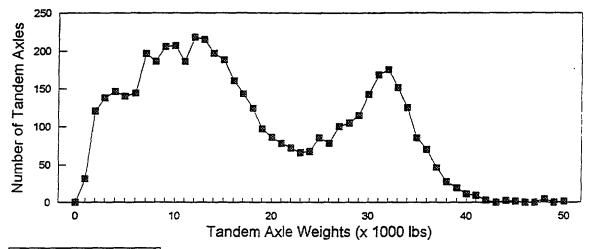


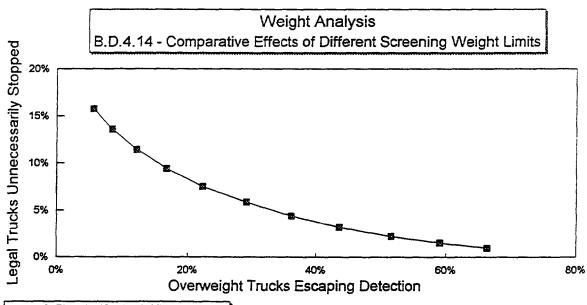


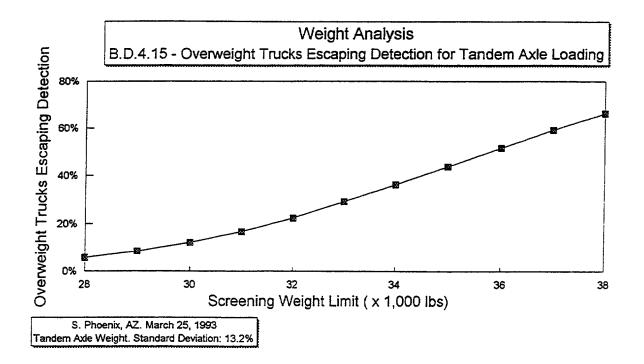


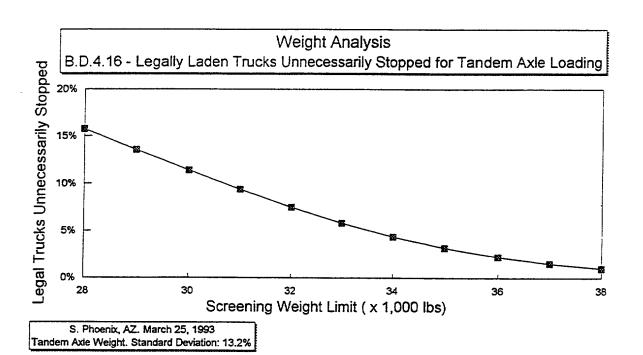


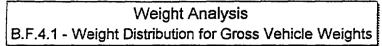


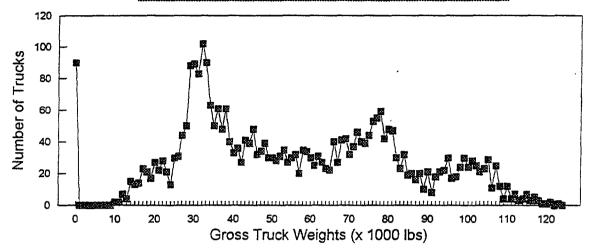




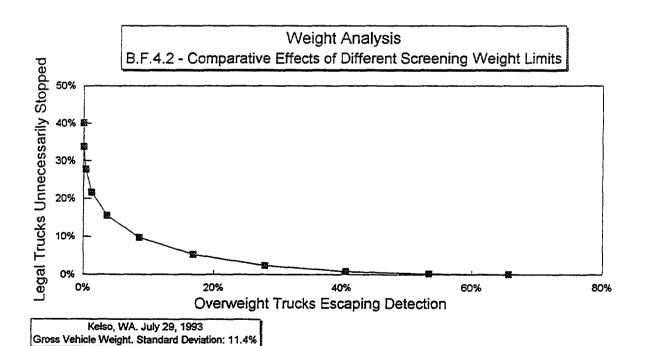


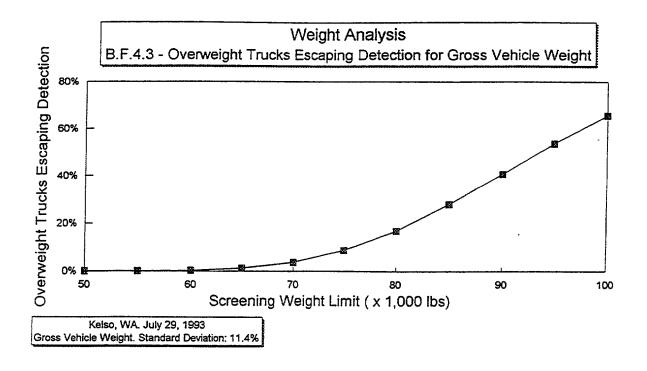


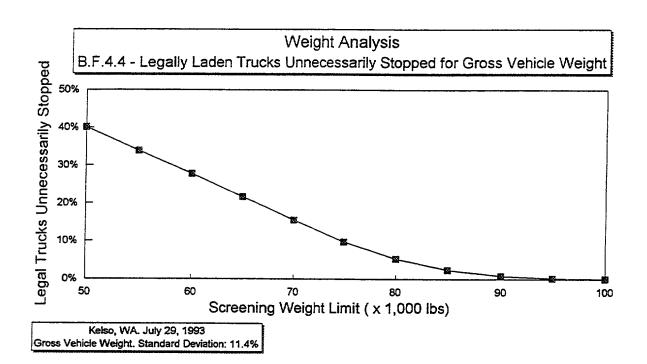

S. Phoenix, AZ. March 25, 1993 Sample Size - 4932

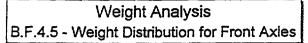


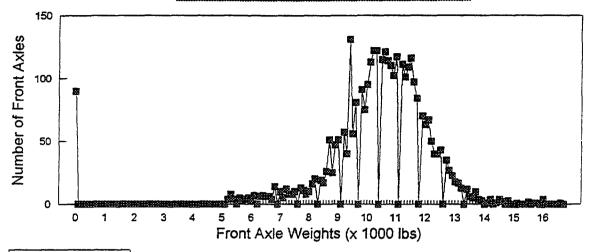
S. Phoenix, AZ. March 25, 1993 Tandem Axle Weight. Standard Deviation: 13.2%

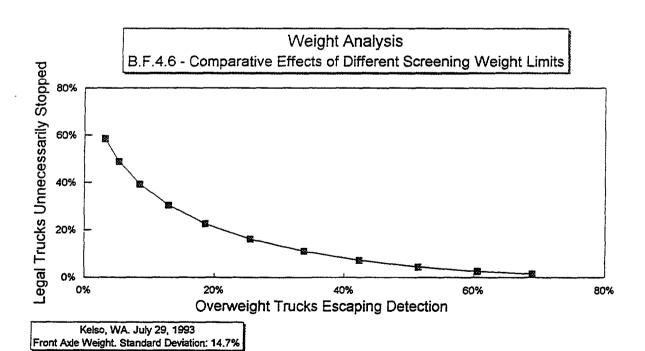


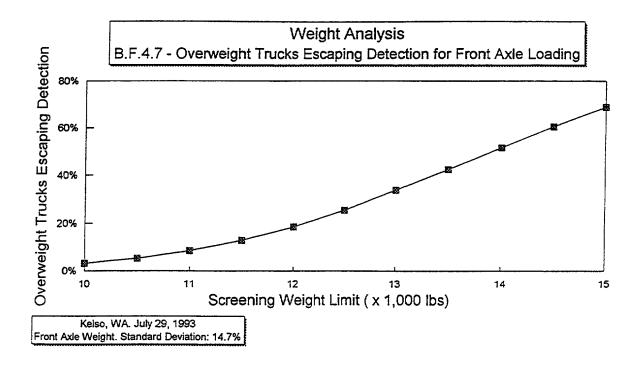


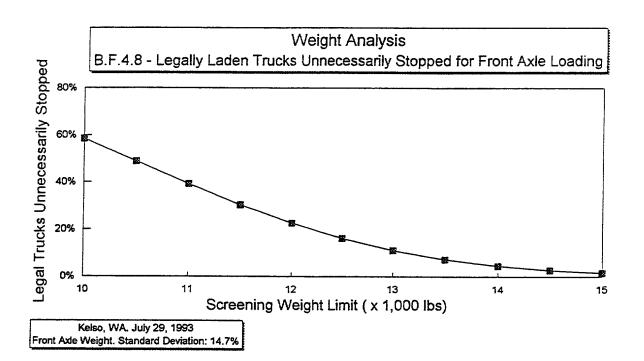


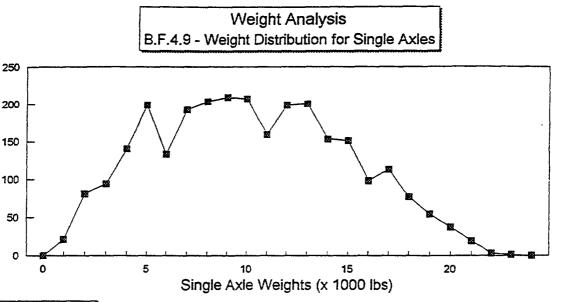


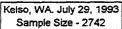

Kelso, WA. July 29, 1993 Sample Size - 3394

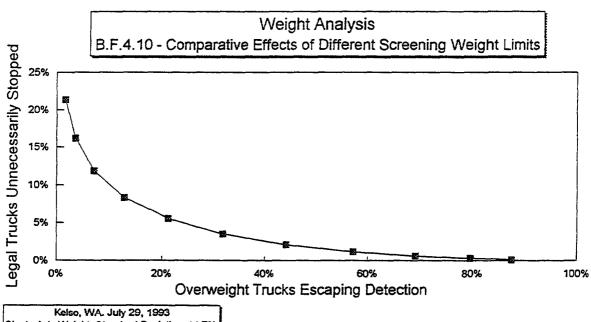


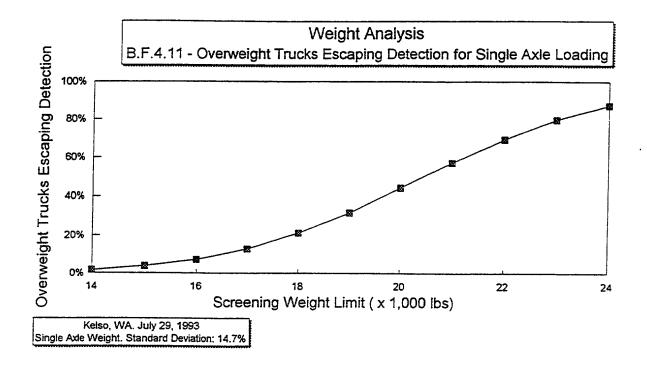


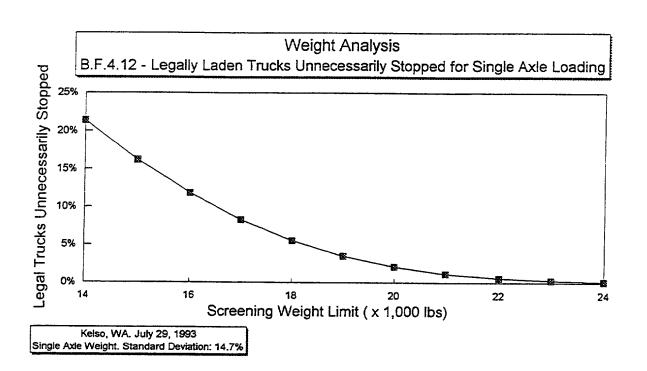


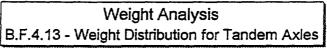


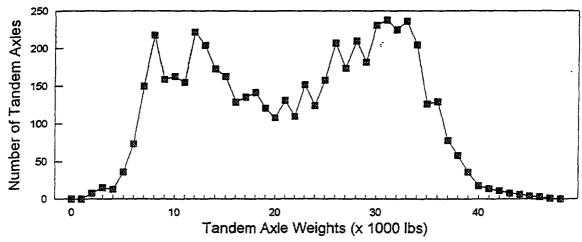

Kelso, WA. July 29, 1993 Sample Size - 3394





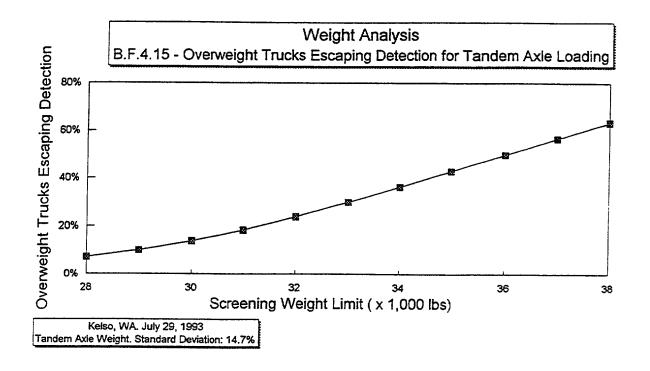


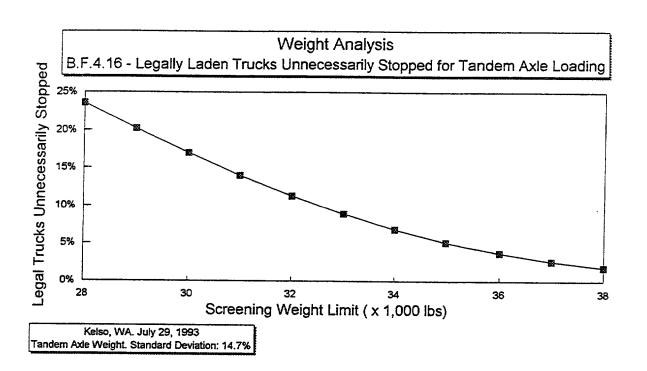

Number of Single Axles

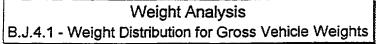


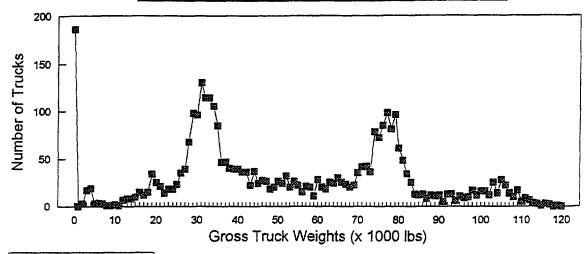
Single Axle Weight. Standard Deviation: 14.7%



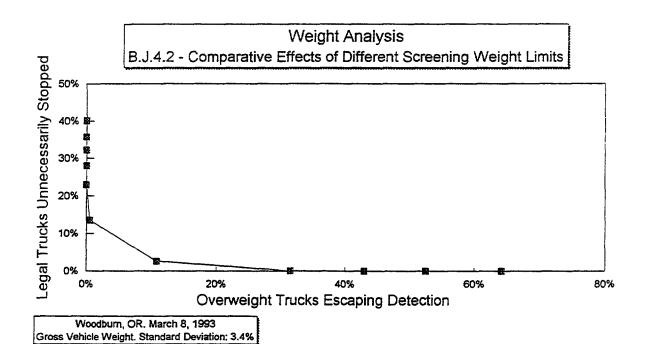


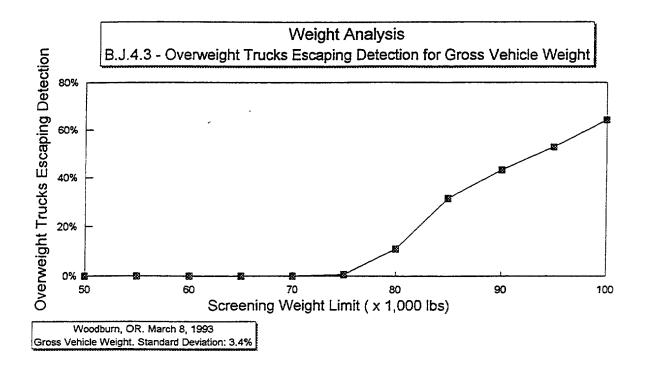


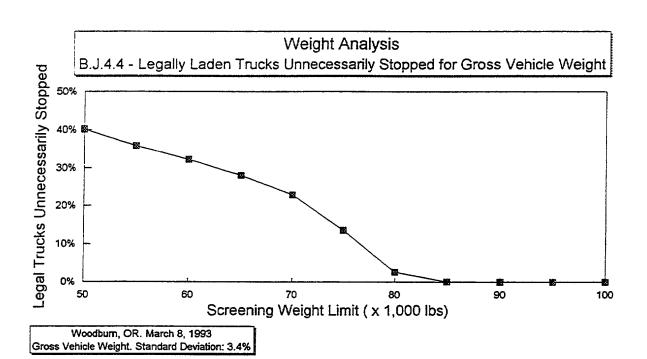

Kelso, WA. July 29, 1993 Sample Size - 5465

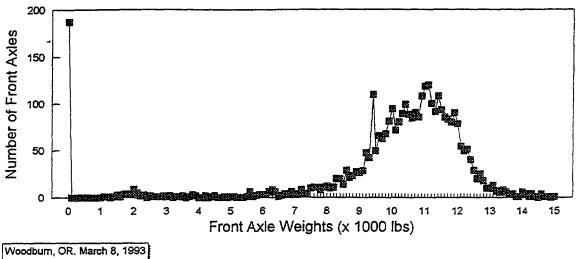


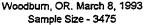
Kelso, WA. July 29, 1993 Tandem Axle Weight. Standard Deviation: 14.7%

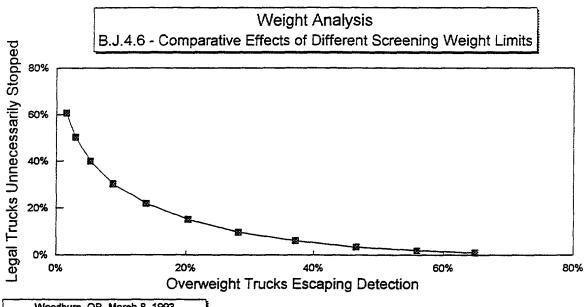


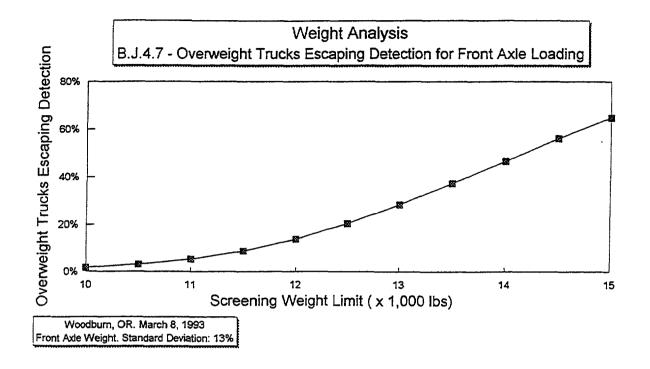


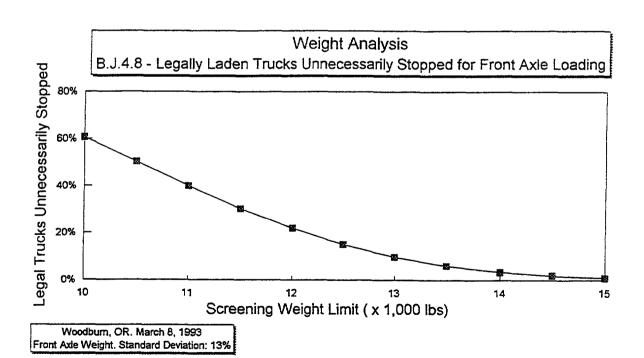


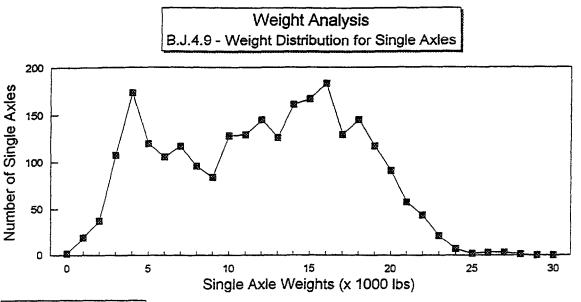

Woodburn, OR. March 8, 1993 Sample Size - 3487

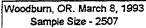


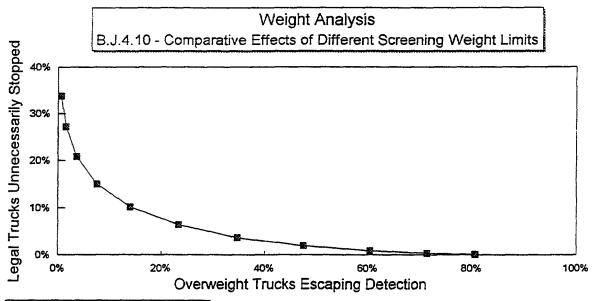


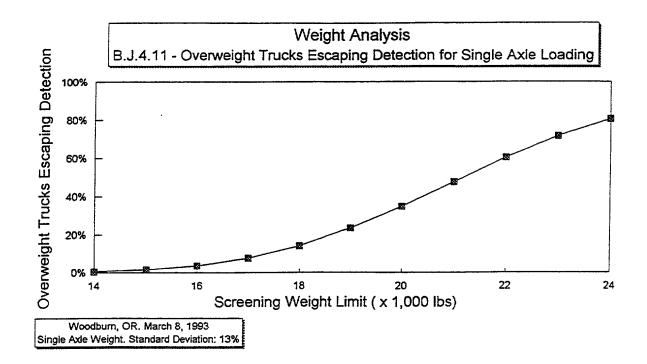




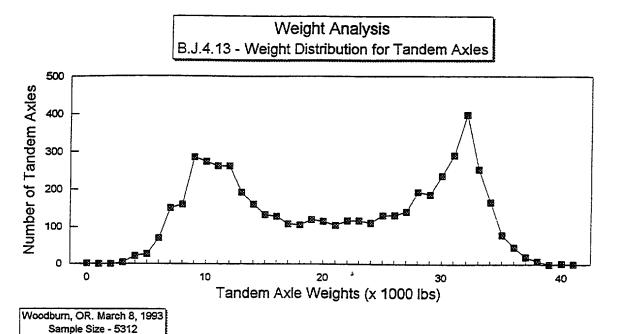


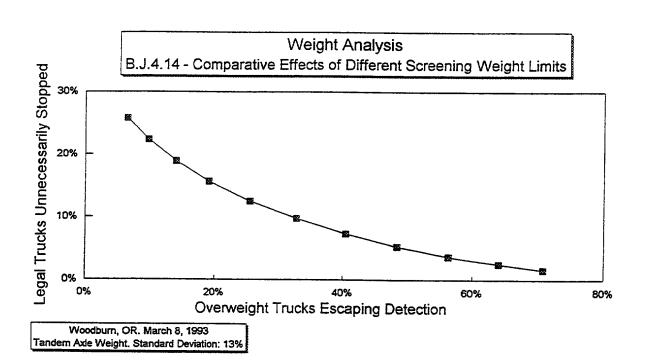


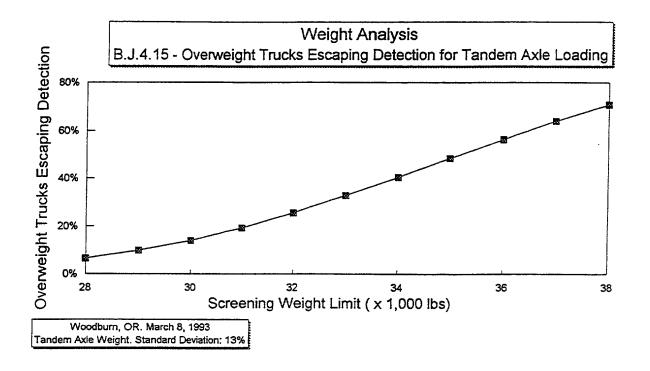

Woodburn, OR. March 8, 1993 Front Axle Weight. Standard Deviation: 13%

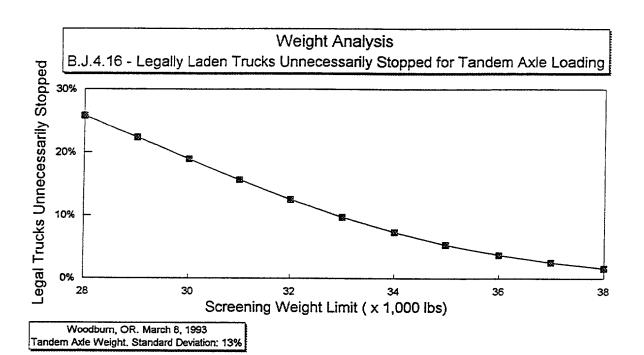


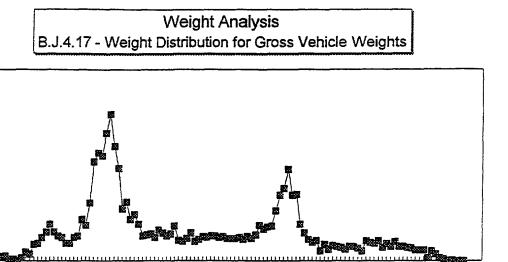


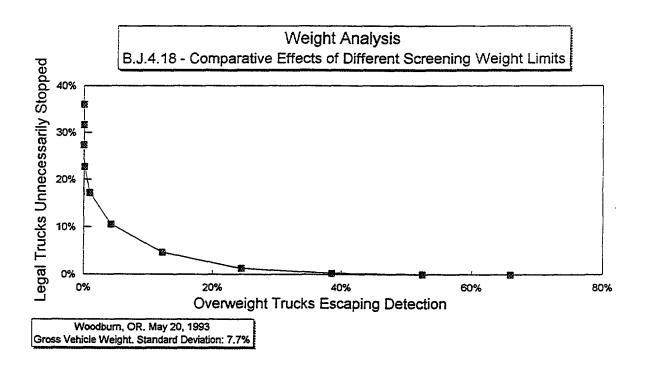


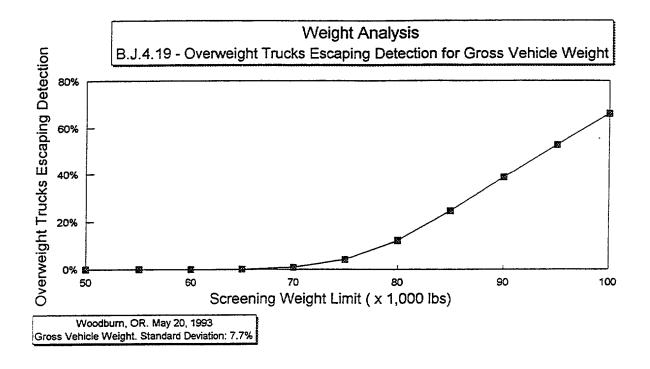


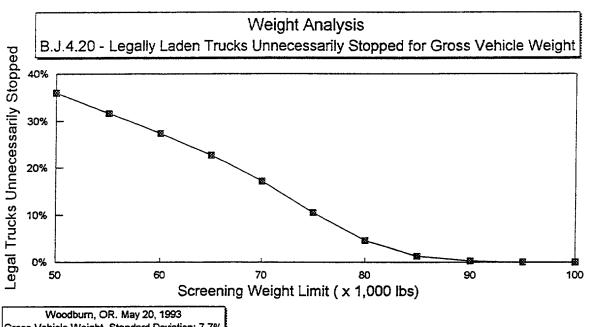

Woodburn, OR. March 8, 1993 Single Axle Weight. Standard Deviation: 13%



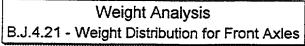


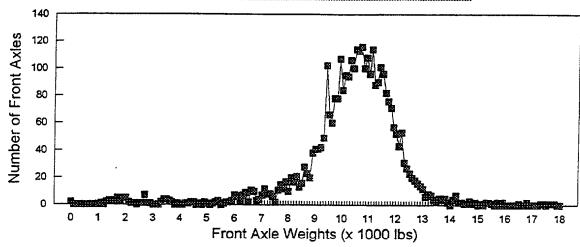


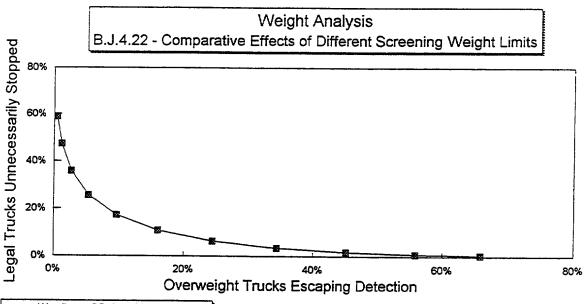



Gross Truck Weights (x 1000 lbs)

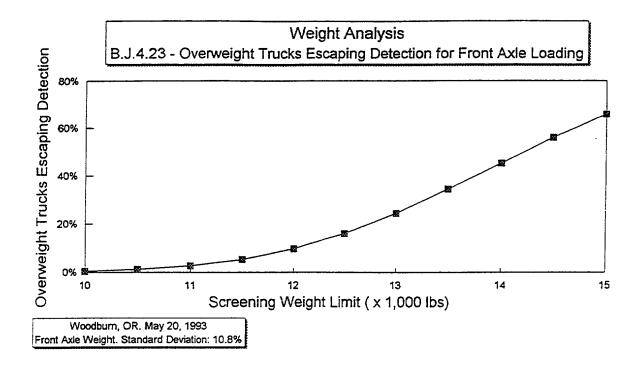
Woodburn, OR. May 20, 1993 Sample Size - 3423

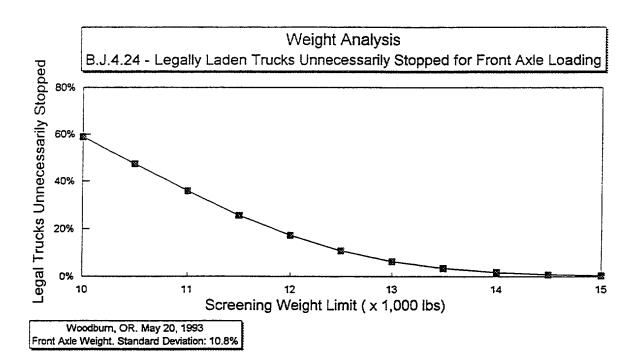

Number of Trucks

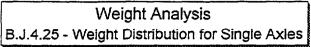


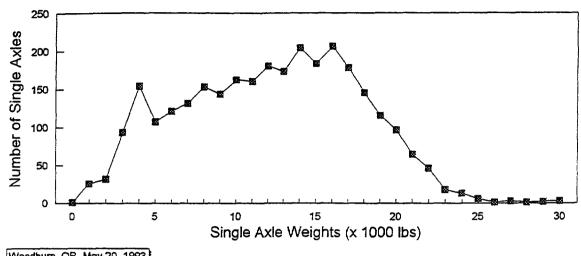


Gross Vehicle Weight. Standard Deviation: 7.7%

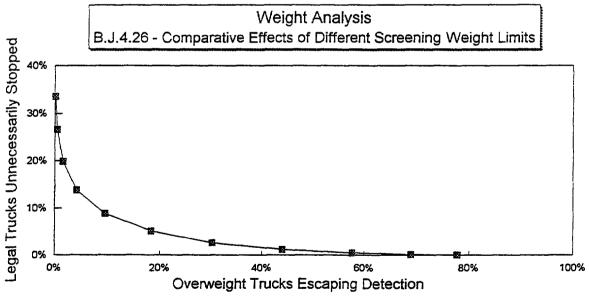


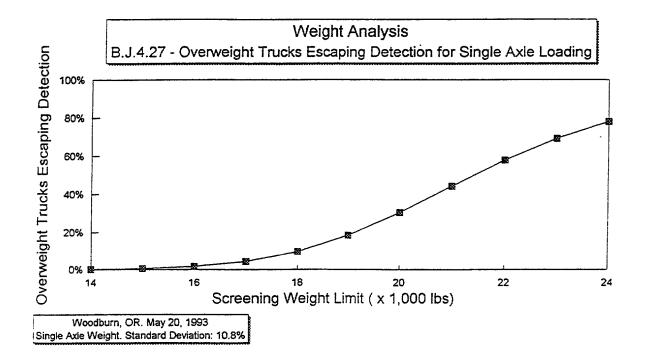



Woodburn, OR. May 20, 1993 Sample Size - 3411

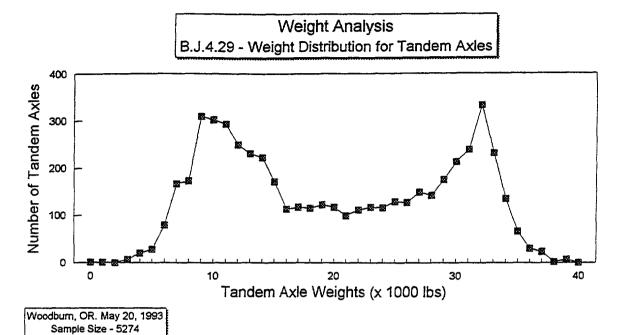


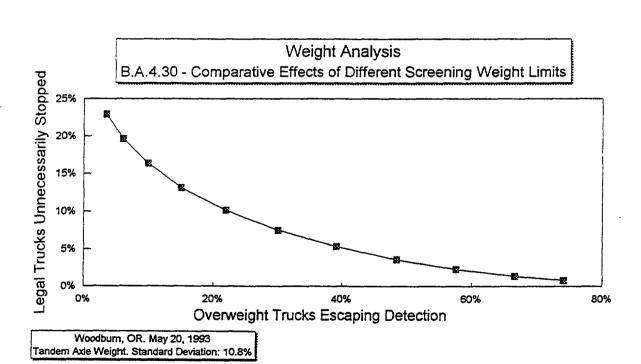
Woodburn, OR. May 20, 1993 Front Axle Weight. Standard Deviation: 10.8%

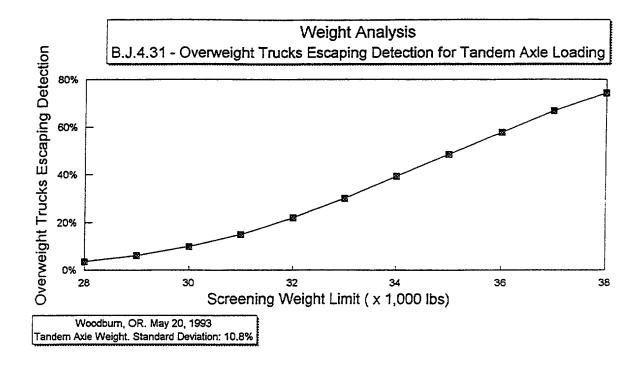


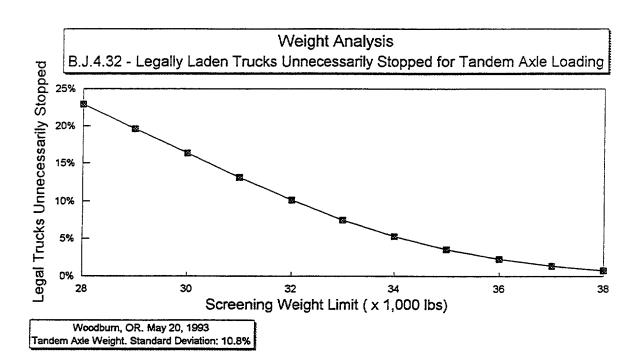


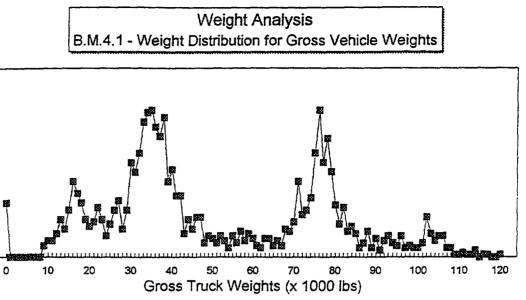



Woodburn, OR. May 20, 1993 Sample Size - 2936

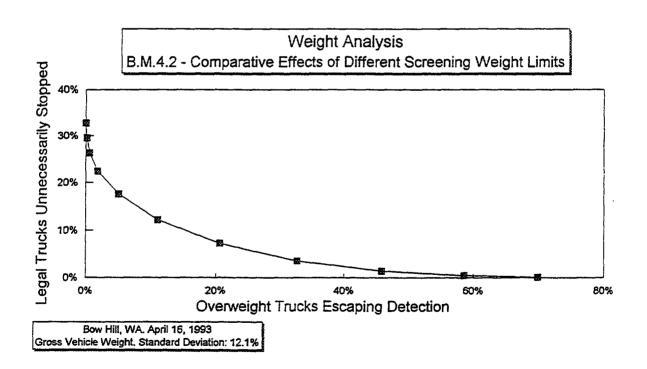


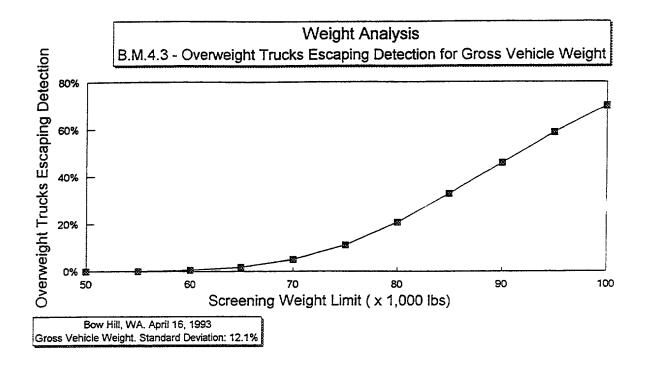

Woodburn, OR. May 20, 1993 Single Axle Weight. Standard Deviation: 10.8%

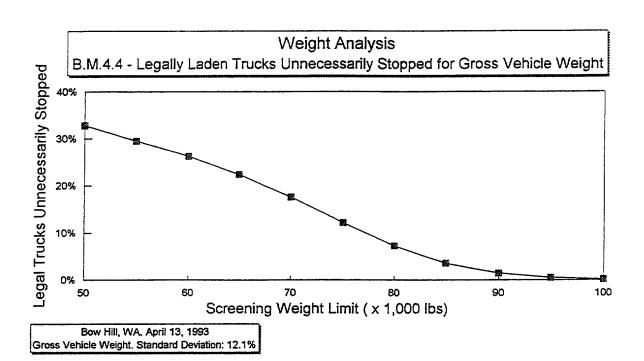


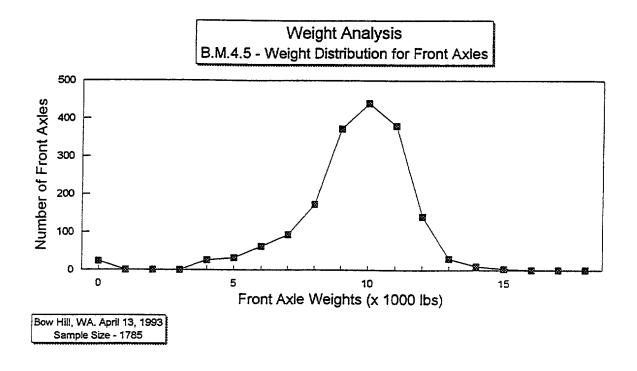


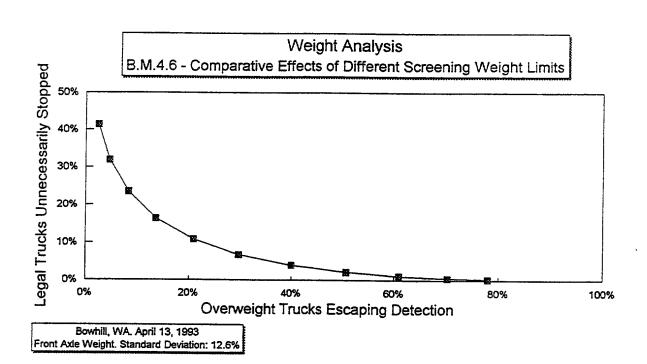


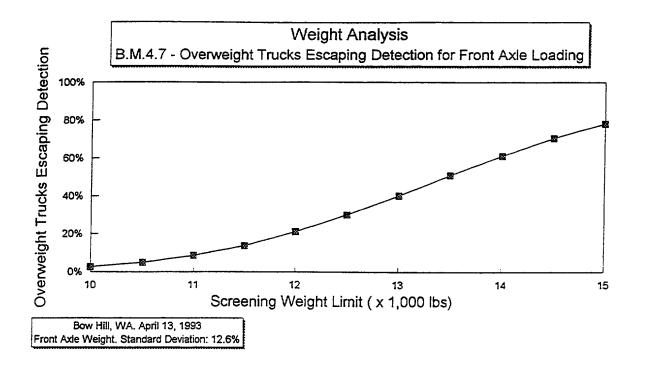


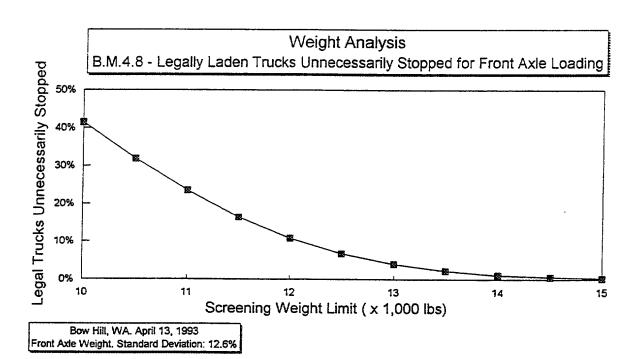


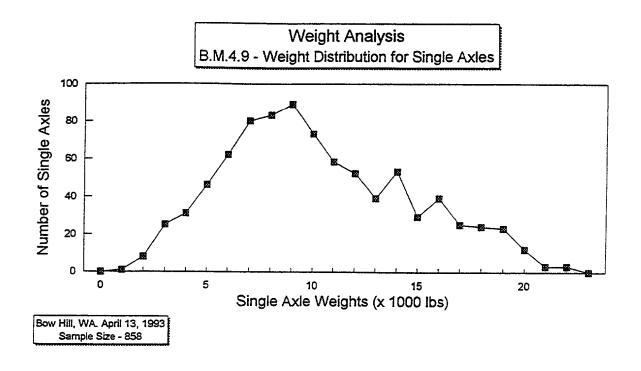


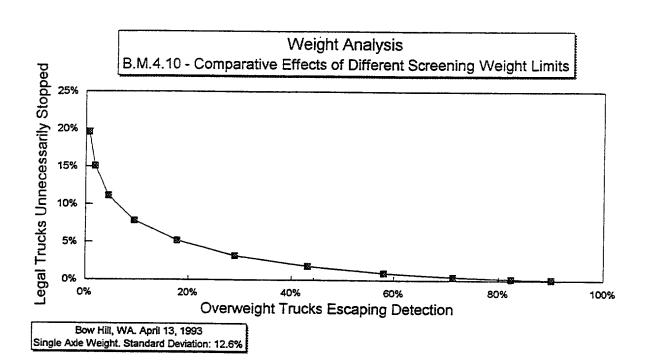


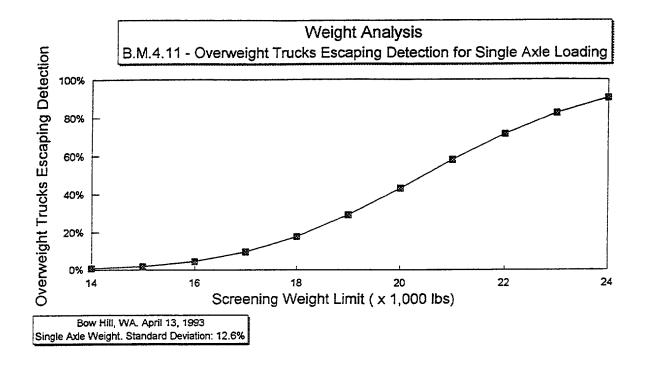

Number of Trucks

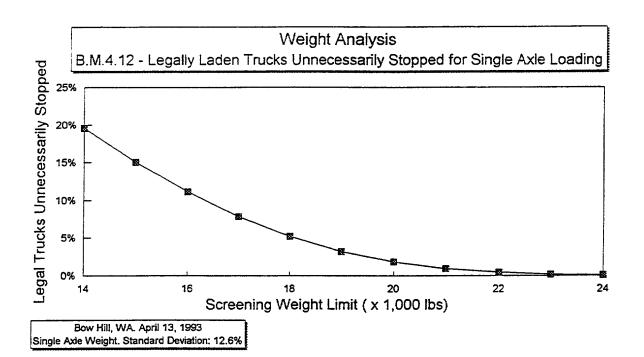


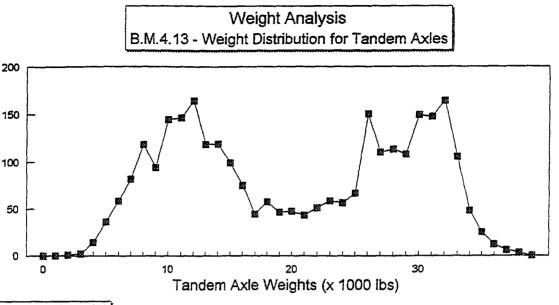


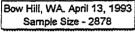


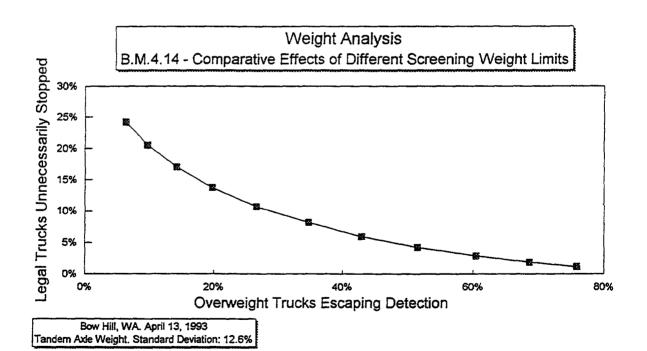


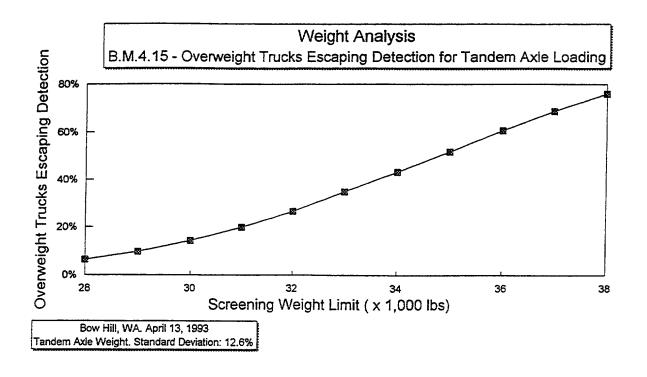


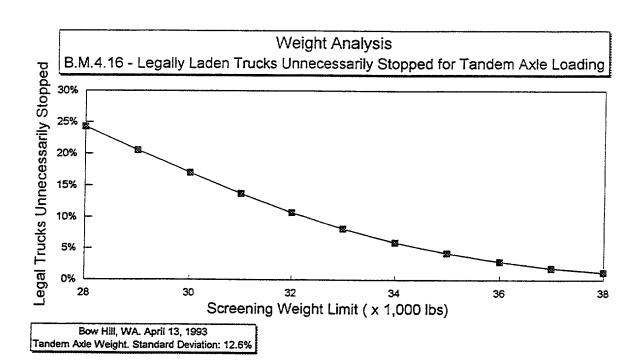




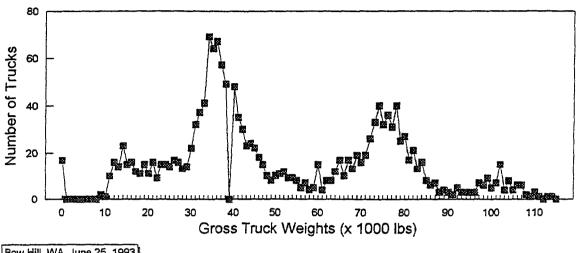


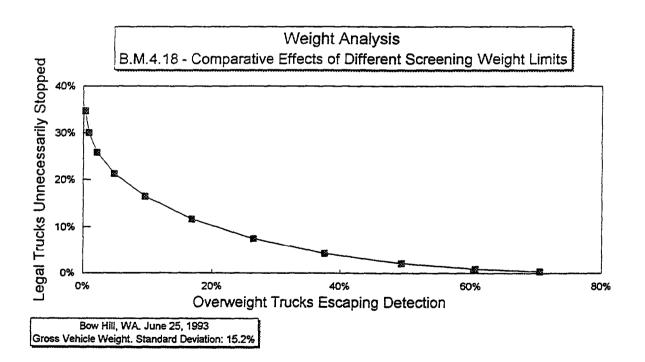


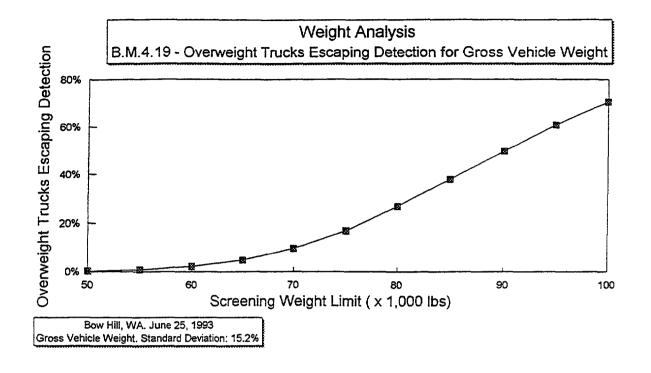


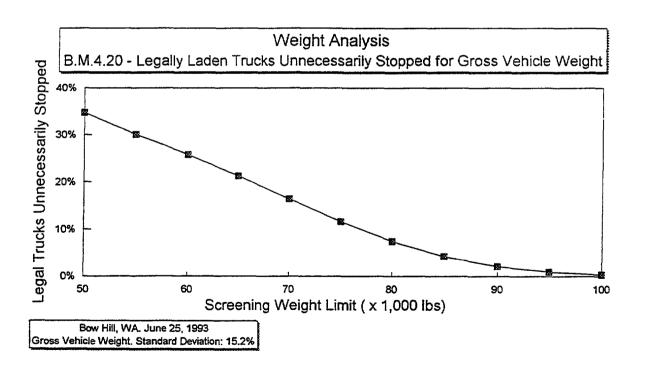


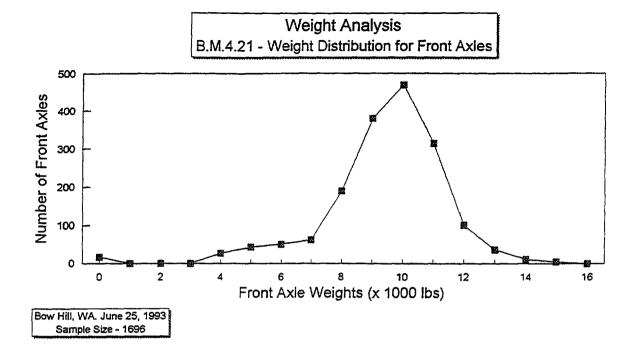
Number of Tandem Axles

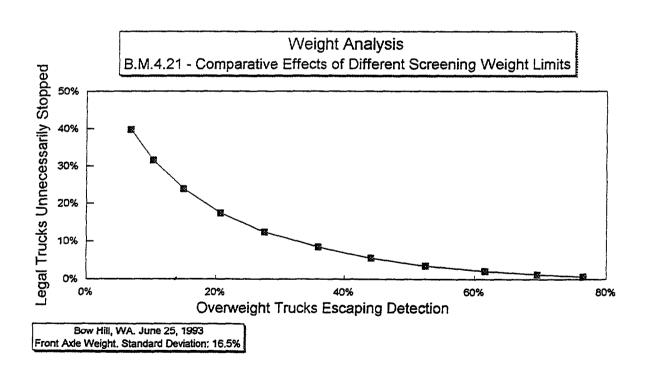


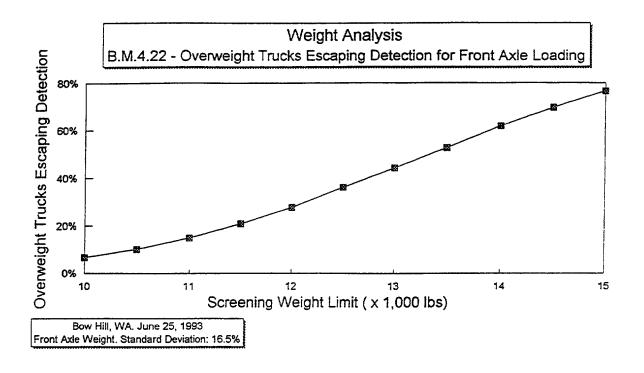


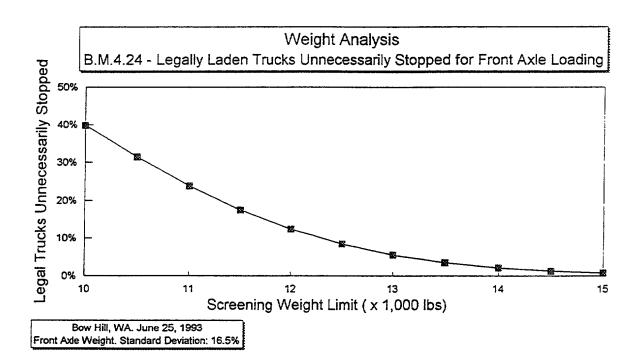

Weight Analysis

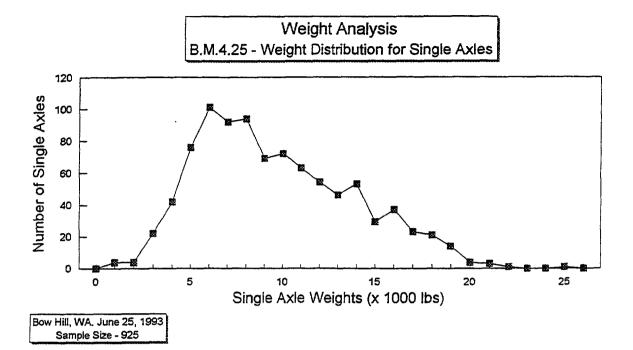

B.M.4.17 - Weight Distribution for Gross Vehicle Weights

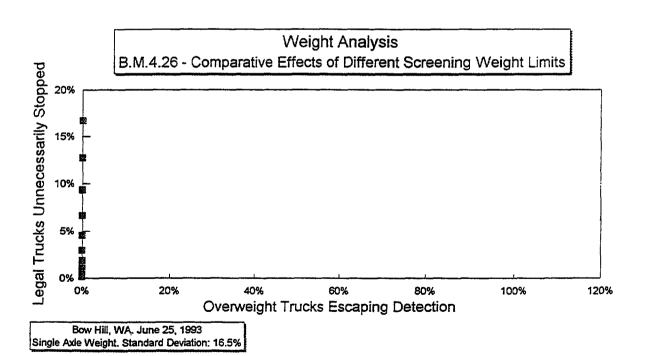


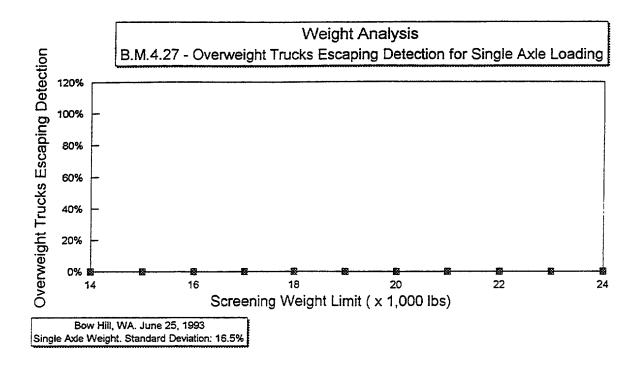

Bow Hill, WA. June 25, 1993 Sample Size - 1696

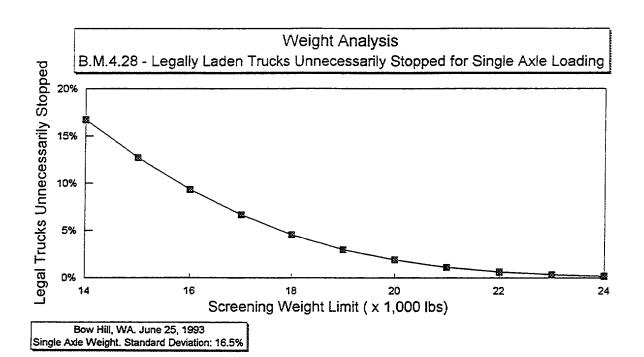


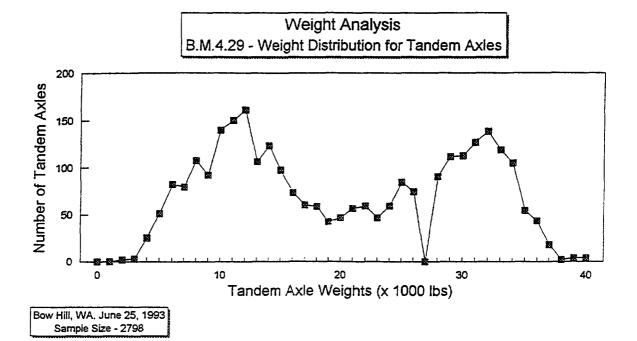


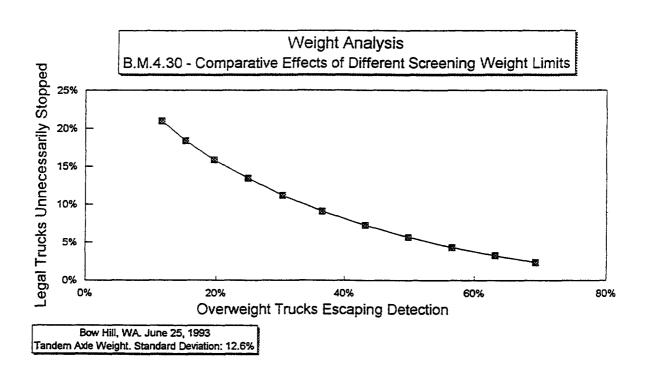


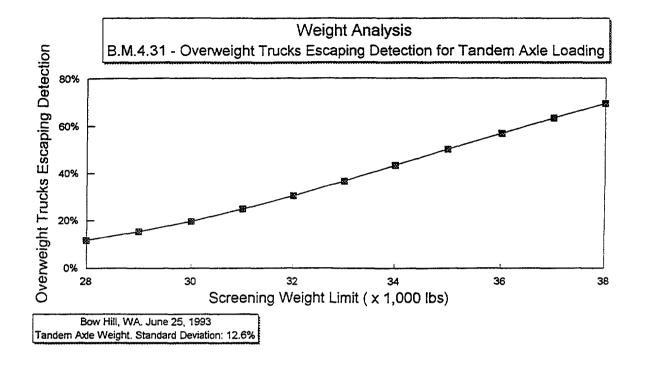


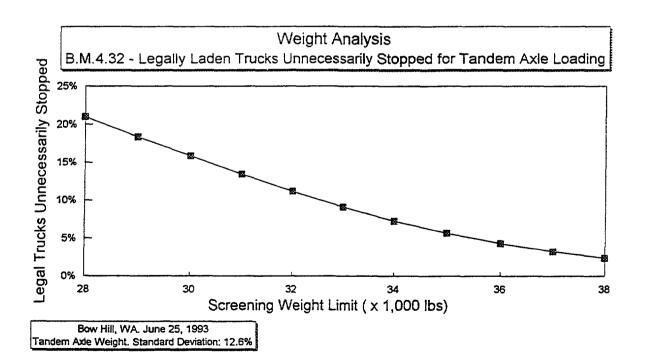












OVERWEIGHT VEHICLES

This section provides the results from the analysis of vehicle and axle weights. Each table gives the total number of vehicles in the sample, and the number and proportion of vehicles overweight under one of the following criteria:

- (1) gross vehicle weight,
- (2) front axle weight,
- (3) other single axle weight,
- (4) tandem axle weight, and
- (5) the federal 'bridge' formula.

To provide a large sample size for the truck weight and axle weight distributions the WIM records for the day of the evaluation study have been utilized. The WIM data that forms the basis of these overweight calculations has been adjusted in by the mean percentage difference found during the static/dynamic weight comparisions for individual sites. This adjustment is made to achieve an approximate recalibration of the WIM systems. Results for the following sites are presented:

- * Jefferson,
- * Ashland,
- * Bakersfield.
- * South Pheonix.
- * Kelso,
- * Woodburn, and
- * Bow Hill.

^{*} It should be noted that the figures quoted for the violations under the bridge formula are those instances where the bridge formula alone has been violated. This does not include those

vehicles that also have overweight violations under the gross vehicle weight, front axle weight, other single axles or tandem axles.

Some vehicles violate more than one of the screening criteria, hence the total number and proportion of overweight vehicles is generally less than the sum of the individual screening criteria.

JEFFERSON, OR - APRIL 7, 1993 TABLE B.A.5.1 - PROPORTION OF OVERWEIGHT VEHICLES

	COUNT	PERCENTAGE (%)
TOTAL NUMBER OF VEHICLES	3199	
GROSS WEIGHT > 80,000 LBS	878	27.4
FRONT AXLE WEIGHT > 13,200 LBS	156	4.9
SINGLE AXLE WEIGHT > 20,000 LBS	216	6.8
TANDEM AXLE WEIGHT > 34,000 LBS	589	18.4
TRUCKS VIOLATING THE BRIDGE FORMULA*	0	0.0
TOTAL OVERWEIGHT VEHICLES	1037	32.4

The results have been generated from WIM records for lane 1 of the Jefferson site on April 7, 1993.

ASHLAND, OR - APRIL 5,1993

TABLE B.B.5.1 - PROPORTION OF OVERWEIGHT VEHICLES

	COUNT	PERCENTAGE (%)
TOTAL NUMBER OF VEHICLES	1268	
GROSS WEIGHT > 80,000 LBS	124	9.8
FRONT AXLE WEIGHT > 13,200 LBS	10	0.8
SINGLE AXLE WEIGHT > 20,000 LBS	17	1.4
TANDEM AXLE WEIGHT > 34,000 LBS	191	15.1
TRUCKS VIOLATING THE BRIDGE FORMULA*	0	0.0
TOTAL OVERWEIGHT VEHICLES	221	17.4

These results were generated from WIM records for the Ashland site on April 5, 1993.

BAKERSFIELD, CA - APRIL, 16, 1993

TABLE B.C.5.1 - PROPORTION OF OVERWEIGHT VEHICLES

	COUNT	PERCENTAGE (%)
TOTAL NUMBER OF VEHICLES	2266	
GROSS WEIGHT > 80,000 LBS	138	6.1
FRONT AXLE WEIGHT > 13,200 LBS	70	3.1
SINGLE AXLE WEIGHT > 20,000 LBS	108	4.8
TANDEM AXLE WEIGHT > 34,000 LBS	563	24.8
TRUCKS VIOLATING THE BRIDGE FORMULA*	0	0.0
TOTAL OVERWEIGHT VEHICLES	596	26.3

These results were generated from WIM records for the Bakersfield, CA site on April 16. 1993.

SOUTH PHEONIX, AZ - MARCH 25,1993

TABLE B.D.4.1 - PROPORTION OF OVERWEIGHT VEHICLES

	COUNT	PERCENTAGE (%)
TOTAL NUMBER OF VEHICLES	4979	
GROSS WEIGHT > 80,000 LBS	94	1.9
FRONT AXLE WEIGHT > 12,000 LBS	454	9.1
SINGLE AXLE WEIGHT > 20,000 LBS	44	0.9
TANDEM AXLE WEIGHT > 34,000 LBS	312	6.3
TRUCKS VIOLATING THE BRIDGE FORMULA*	0	0.0
TOTAL OVERWEIGHT VEHICLES	628	12.6

These results were generated from WIM records for lanes 2, 3, 4, 5, 6, and 7 of the South Pheonix, AZ site on March 25, 1993. There was a total of 9977 vehicle WIM records, however the WIM system did not record truck weight data on 4998 vehicles.

KELSO, WA -JULY 29,1993

TABLE B.F.5.1 - PROPORTION OF OVERWEIGHT VEHICLES

	COUNT	PERCENTAGE (%)
TOTAL NUMBER OF VEHICLES	3306	
GROSS WEIGHT > 80,000 LBS	617	18.7
FRONT AXLE WEIGHT > 13,200 LBS	so3	15.2
SINGLE AXLE WEIGHT > 20,000 LBS	786	23.8
TANDEM AXLE WEIGHT > 34,000 LBS	201	6.1
TRUCKS VIOLATING THE BRIDGE FORMULA*	0	0.0
TOTAL OVERWEIGHT VEHICLES	1232	37.3

These results were generated from WIM records for the Kelso site on July 29, 1993. There was a total of 3394 vehicle WIM records, however the WIM system did not record truck weight data on 88 vehicles.

WOODBURN, OR - MARCH 8,1993 TABLE B.J.5.1 - PROPORTION OF OVERWEIGHT VEHICLES

	COUNT	PERCENTAGE (%)
TOTAL NUMBER OF VEHICLES	3304	
GROSS WEIGHT > 80,000 LBS	554	16.8
FRONT AXLE WEIGHT > 13,200 LBS	115	3.5
SINGLE AXLE WEIGHT > 20,000 LBS	158	4.8
TANDEM AXLE WEIGHT > 34,000 LBS	329	10.0
TRUCKS VIOLATING THE BRIDGE FORMULA"	0	0.0
TOTAL OVERWEIGHT VEHICLES	784	23.7

These results were generated from WIM records for the Woodbum site on March 8, 1993. There was a total of 3487 vehicle WIM records, however the WIM system did not record truck weight data on 183 vehicles.

WOODBURN, OR - MAY 20,1993 TABLE B.J.5.2 - PROPORTION OF OVERWEIGHT VEHICLES

	COUNT	PERCENTAGE (%)
TOTAL NUMBER OF VEHICLES	3423	
GROSS WEIGHT > 80,000 LBS	543	15.8
FRONT AXLE WEIGHT > 13,200 LBS	92	2.7
SINGLE AXLE WEIGHT > 20,000 LBS	198	5.8
TANDEM AXLE WEIGHT > 34,000 LBS	193	5.6
TRUCKS VIOLATING THE BRIDGE FORMULA*	0	0.0
TOTAL OVERWEIGHT VEHICLES	708	20.7

These results were generated from WIM records for the Woodburn site on May 20, 1993. There was a total of 3750 vehicle WIM records, however the WIM system did not record truck weight data on 322 vehicles.

BOW HILL, WA - APRIL 13, 1993TABLE B.M.5.1 - PROPORTION OF OVERWEIGHT VEHICLES

	COUNT	PERCENTAGE (%)
TOTAL NUMBER OF VEHICLES	1762	
GROSS WEIGHT > 80,000 LBS	294	16.7
FRONT AXLE WEIGHT > 13,200 LBS	16	0.9
SINGLE AXLE WEIGHT > 20,000 LBS	195	11.1
TANDEM AXLE WEIGHT > 34,000 LBS	46	2.6
TRUCKS VIOLATING THE BRIDGE FORMULA"	0	0.0
TOTAL OVERWEIGHT VEHICLES	362	20.5

These results were generated from WIM records for the Bow Hill site on April 13, 1993. There was a total of 1785 vehicle WIM records, however the WIM system did not record truck weight data on 23 vehicles.

BOW HILL, WA - JUNE 25,1993TABLE B.M.5.2 - PROPORTION OF OVERWEIGHT VEHICLES

	COUNT	PERCENTAGE (%)
TOTAL NUMBER OF VEHICLES	1679	
GROSS WEIGHT > 80,000 LBS	232	13.8
FRONT AXLE WEIGHT > 13,200 LBS	51	3.1
SINGLE AXLE WEIGHT > 20,000 LBS	30	1.8
TANDEM AXLE WEIGHT > 34,000 LBS	125	7.4
TRUCKS VIOLATING THE BRIDGE FORMULA*	0	0.0
TOTAL OVERWEIGHT VEHICLES	288	17.2

These results were generated from WIM records for the Bow Hill site on April 13, 1993. There was a total of 1696 vehicle WIM records, however the WIM system did not record truck weight data on 17 vehicles.

TRUCK TRANSIT TIMES

This section provides the transit times observed for vehicles to pass through weighstations. Unless otherwise stated, these times relate to the route through the weighstation that passes over the static scale. For each analysis, a screening process has been undertaken to remove abnormally long transit times that result from vehicles that have parked or been restrained within the weighstation.

The division between abnormally long transit times and normal duration transit times has been made at one standard deviation above the mean transit time recorded for vehicles to pass through the site. If the transit times through sites were normally distributed it would be expected that 16 % of vehicles would be considered to have abnormal transit times. The proportion falling above one standard deviation above the mean transit time was found to be less than 16%, indicating that these times are not normally distributed.

Results for the following sites are presented in tabular form:

- * Ashland,
- * Lordsburg,
- * Woodburn.
- * San Simon.
- * Bow Hill,
- * Santa Nella, and
- * Banning.

ASHLAND, OR - APRIL 5,1993

TABLE B.B.6.1 - TRANSIT TIMES THROUGH WEIGHSTATION

	Avg. Time (s)	Standard Deviation	Sample Size
All data	228	270	369
Norma1 Transit Time	158	81	337
Abnormal Transit Time	970	414	32

Note: The time dividing abnormal transit times from normal transit times is 498 seconds.

LORDSBURG, NM - MARCH 5,1993

TABLE B.G.6.1 - TRANSIT TIMES THROUGH WEIGHSTATION

	Avg. Time (s)	Standard Deviation	Sample Size
All data	951	843	66
Normal Transit Time	765	345	61
Abnormal Transit Time	3216	1681	5

Note: The time dividing abnormal transit time from normal transit time is 1794 seconds.

WOODBURN, OR - MARCH 9,1993

TABLE B-J-6.1 - TRANSIT TIMES FOR ALL TRUCKS

	Avg. Time (s)	Standard Deviation	Sample Size
All data	82	39	828
Normal Transit Time	74	27	746
Abnormal Transit Time	154	53	82

Note: The time dividing abnormal transit time from normal transit time is 121 seconds.

TABLE B.J.6.2 - TRANSIT TIMES FOR TRUCKS BYPASSED IN SITE

	Avg. Time (s)	Standard Deviation	Sample Size
All data	65	27	488
Normal Transit Time	54	15	396
Abnormal Transit Time	110	16	92

Note: The time dividing abnormal transit time from normal transit time is 92 seconds.

TABLE B.J.6.3 - TRANSIT TIMES FOR TRUCKS STATICALLY WEIGHED

	Avg. Time (s)	Standard Deviation	Sample Size
All data	107	39	340
Normal Transit Time	99	21	312
Abnormal Transit Time	190	78	28

Note: The time dividing abnormal transit time from normal transit time is 146 seconds.

WOODBURN, OR - MAY 21,1993

TABLE B.J.6.4 - TRANSIT TIMES THROUGH WEIGHSTATION

	Avg. Time (s)	Standard Deviation	Sample Size
All data	83	112	524
Normal Transit Time	73	32	518
Abnormal Transit Time	867	669	6

Note: The time dividing abnormal transit time from normal transit time is 195 seconds.

SAN SIMON, NM - FEBRUARY 3, 1993

TABLE B.K.6.1 - TRANSIT TIMES THROUGH WEIGHSTATION

	Avg. Time (s)	Standard Deviation	Sample Size
All data	230	73	313
Normal Transit Time	204	49	257
Abnormal Transit Time	351	35	56

Note: The time dividing abnormal transit time from normal transit time is 303 seconds.

SAN SIMON, NM - MAY 10,1993

TABLE B.K.6.2 - TRANSIT TIMES THROUGH WEIGHSTATION

	Avg. Time (s)	Standard Deviation	Sample Size
All data	283	397	238
Normal Transit Time	168	120	212
Abnormal Transit Time	1221	591	26

Note: The time dividing abnormal transit time from normal transit time is 680 seconds.

BOW HILL, WA - APRIL 14,1993

TABLE B.M.6.1 - TRANSIT TIMES THROUGH WEIGHSTATION

	Avg. Time (s)	Standard Deviation	Sample Size
All data	74	29	116

Note: The time dividing abnormal transit time from normal transit time is 103 seconds. In this case, there were no abnormal transit times.

BOW HILL, WA - JUNE 24,1993

TABLE B.M.6.2 - TRANSIT TIMES THROUGH WEIGHSTATION

	Avg. Time (s)	Standard Deviation	Sample Size
All data	154	135	419
Normal Transit Time	137	53	407
Abnormal Transit Time	731	468	12

Note: The time dividing abnormal transit time from normal transit time is 289 seconds.

SANTA NELLA, CA - MAY 6,1993

TABLE B.O.6.1 - TRANSIT TIMES THROUGH WEIGHSTATION

	Avg. Time (s)	Standard Deviation	Sample Size
All data	170	23	268

Note: The time dividing abnormal transit time from normal transit time is 193 seconds. In this case there were no abnormal transit times identified.

SANTA NELLA, CA - JULY 1,1993

TABLE B.O.6.2 - TRANSIT TIMES THROUGH WEIGHSTATION

	Avg. Time (s)	Standard Deviation	Sample Size
All data	88	76	227
Normal Transit Time	80	18	223
Abnormal Transit Time	535	380	4

Note: The time dividing abnormal transit time from normal transit time is 164 seconds.

BANNING, CA - MAY 13, 193

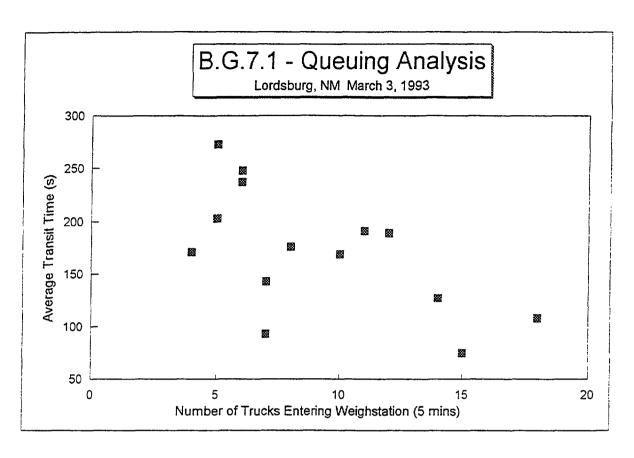
TABLE B.P.6.1 - TRANSIT TIMES FOR STATICALLY WEIGHED TRUCKS

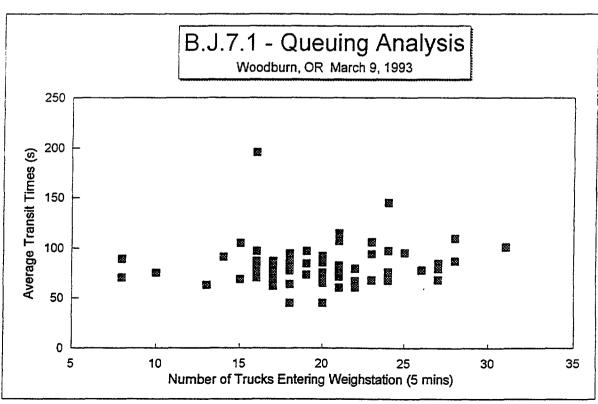
	Avg. Time (s)	Standard Deviation	Sample Size
All data	460	467	259
Normal Transit Time	390	124	250
Abnormal Transit Time	2241	1472	9

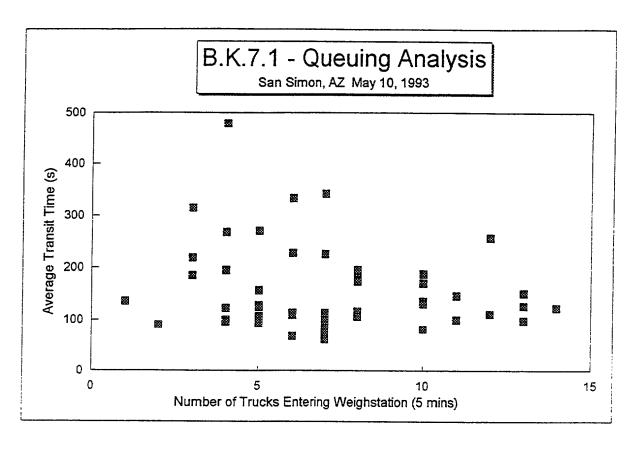
Note: The time dividing abnormal transit time from normal transit time is 927 seconds.

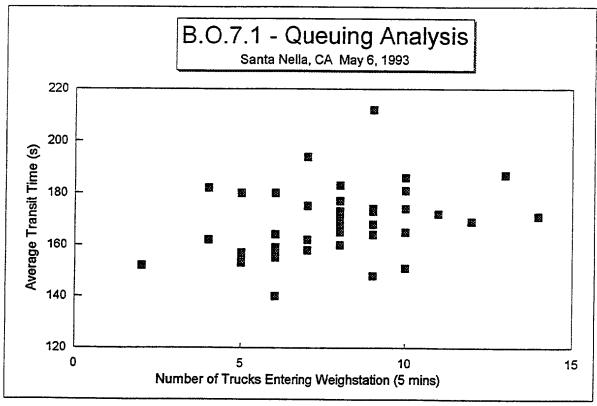
TABLE B.P.6.2 - TRANSIT TIMES FOR TRUCKS BYPASSED IN SITE

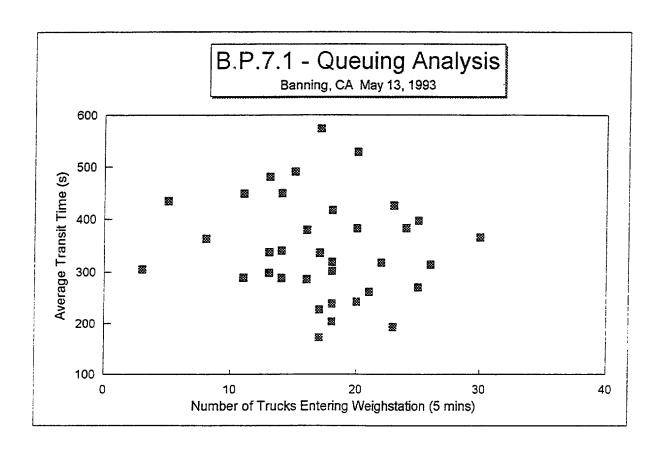
	Avg. Time (s)	Standard Deviation	Sample Size
All data	274	329	116
Normal Transit Time	219	77	111
Abnormal Transit Time	1499	993	5


Note: The time dividing abnormal transit time from normal transit time is 603 seconds.


QUEUING ANALYSIS


This section contains some of the information used during the queuing analysis at weighstations. The graphs shown display the average transit times for vehicles passing through particular weighstations within selected periods plotted against the number of vehicles entering the weighstation during the same periods. These periods were five minutes in duration. Such graphs have been used to assess the relationship between reduced truck volume entering the weighstations resulting from use of mainline bypassing using the HELP concept and the transit times for the remaining trucks passing through the sites. No clear relationship was established.


Results for the following sites are displayed:


- * Lordsburg,
- * Woodburn,
- * San Simon,
- * Santa Nella, and
- * Banning.

